#### KOLHAN UNIVERSITY, CHAIBASA JHARKHAND



#### Syllabus for FYUGP (Mathematics Major & Minor)

As per

#### Revised Curriculum and Credit Frame work of NEP- 2020

To be effective from academic session 2022-26

University Department of Mathematics Kolhan University, Chaibasa West Singhbhum, Jharkhand-833202

#### UNIVERSITY DEPARTMENT OF MATHEMATICS KOLHAN UNIVERSITY, CHAIBASA

#### Four-Year under Graduate Programme (FYUGP)

As per Provisions of NEP-2020 to be implemented from Academic Year 2022-23

#### COMPOSITION OF BOARD OF STUDIES

Buch

1. Dr. Bijay Kumar Sinha Head, University Department of Mathematics, Kolhan University Chaibasa

- 2. Dr. Md. Moiz Ashraf Head, P.G. Department of Mathematics Karim City, College, Jamshedpur
- Dr. P. C. Banerjee
   Assistant Professor,
   P.G. Department of Mathematics
   Karim City, College, Jamshedpur
- Mr. Mahendra Kumar Rana Assistant Professor, University Department of Mathematics, Kolhan University Chaibasa

ela

Dr.Bijay Kumar Sinha (Chairman & Head) University Department of Mathematics, Kolhan University, Chaibasa.

|          | Paper                | Code  | Course Title                                   | Credit |
|----------|----------------------|-------|------------------------------------------------|--------|
| Semester |                      | MJ-1  | Calculus                                       | 4      |
| <u> </u> | Major-01             | MJ-2  | Matrices                                       | 4      |
| Ш        | Major-02<br>Major-03 | MJ-3  | Analytical Geometry &<br>Trigonometry          | 4      |
|          | Major-04             | MJ-4  | Real Analysis                                  | 4      |
|          | Major-05             | MJ-5  | Vector                                         | 4      |
| 111      | Major-06             | MJ-6  | Real Analysis & Set<br>theory                  | 4      |
| IV       | Major-07             | MJ-7  | Ordinary Differential<br>Equation              | 4      |
|          | Major-08             | MJ-8  | Group Theory                                   | 4      |
|          | Major-09             | MJ-9  | Mechanics                                      | 4      |
| V        | Major-10             | MJ-10 | Theory of Equation &<br>Higher Arithmetic      | 4      |
|          | Major-11             | MJ-11 | Complex Analysis                               | 4      |
|          | Major-12             | MJ-12 | Dynamics & Statics                             | 4      |
|          | Major-13             | MJ-13 | LPP & Statistics                               | 4      |
| VI       | Major-14             | MJ-14 | Analysis II & Ring                             | 4      |
| vi       | Major-15             | MJ-15 | Numerical Analysis &<br>Programming in C       | 4      |
|          | Major-16             | MJ-16 | Fluid Mechanics &<br>Special Function          | 4      |
| VII      | Major-17             | MJ-17 | Metric space & Discrete<br>Mathematics         | 4      |
|          | Major-18             | MJ-18 | Integral Transform                             | 4      |
|          | Major-19             | MJ-19 | Partial Differentiation                        | 4      |
|          | Major-20             | MJ-20 | Linear Algebra & Linear<br>Difference equation | 4      |
|          | Advance Major-01     | AMJ-1 | Topology                                       | 4      |
| VIII     | Advance Major-02     | AMJ-2 | Complex Analysis II                            | 4      |
|          | Advance Major-02     |       | Real Analysis & Measure<br>Theory              | 4      |

#### Index

| rogram: Ce<br>Class: UG | ertificate                                                 | Year: First                                                                                                                          | Semester: I                                                                                                                                                                                                                                         |           |
|-------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                         | thematics                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                     |           |
| 0.1                     | NII 1                                                      | Course Title: Calculu                                                                                                                | us                                                                                                                                                                                                                                                  |           |
|                         |                                                            | utcomes: This course v                                                                                                               | will enable the students to:                                                                                                                                                                                                                        | octions   |
| a) Appl<br>Also         | y the rules of<br>, able to app                            | differentiation, includin<br>Ily different mean value                                                                                | e theorems, such as Rolle's theorem and Lag                                                                                                                                                                                                         | IS.       |
| b) App<br>app           | roximate fur<br>roximations                                | nctions using Maclaurin<br>using Taylor's theorem v                                                                                  | n's and Taylor's series, analyze the cristian<br>with Lagrange, Cauchy, and Roche-Schlomilc                                                                                                                                                         | h forms   |
| sign                    | ificance and                                               | identify the different                                                                                                               | curve at a given point, and understand its ge<br>types of asymptotes of general algebraic<br>es parallel to axes, and slant asymptotes.                                                                                                             |           |
| d) Tra<br>cale          | ce Cartesian,<br>culus technic                             | polar, and parametric on polar, and parametric of polar to analyze the beh                                                           | navior of curves and solve real-world proble                                                                                                                                                                                                        |           |
|                         |                                                            | reduction formulae 0                                                                                                                 | parameterize curves, and compute arc length rea of surfaces of revolution.                                                                                                                                                                          | , area or |
| Credit: 4 (             | Theory)                                                    | Compulsory                                                                                                                           |                                                                                                                                                                                                                                                     |           |
| Full Mark               |                                                            | Time: 3 Hours                                                                                                                        |                                                                                                                                                                                                                                                     | Hours     |
| Unit                    |                                                            | C                                                                                                                                    | Content                                                                                                                                                                                                                                             |           |
| I                       | Geometrica<br>Chain rule<br>Lagrange's<br>Geometrica       | al interpretation of dif<br>of differentiation; [<br>mean value theore<br>al interpretation of                                       | ntiability of a real valued function,<br>fferentiability, Rules of differentiation,<br>Darboux's theorem, Rolle's theorem,<br>em, Cauchy's mean value theorem,<br>mean value theorems, Successive                                                   | 15 h      |
| II                      | Expansion<br>expansion<br>form with                        | of a function in an in<br>Lagrange, Cauchy and                                                                                       | aclaurin's and Taylor's theorem in finite<br>offinite series, Taylor's theorem in finite<br>Roche–Schlomilch forms of remainder,                                                                                                                    | 12 h      |
| III                     | Curvatur<br>algebraic                                      | e and Asymptotes:<br>curves, Parallel asyn<br>Concavity and conv                                                                     | Curvature; Asymptotes of general<br>mptotes, Asymptotes parallel to axes;<br>vexity, Points of inflection, Tangents at<br>and nature of double points.                                                                                              | 13 h      |
| IV                      | Curve T                                                    | racing: Tracing of Ca                                                                                                                | artesian, polar and parametric curves,                                                                                                                                                                                                              | 10 1      |
| v                       | Integral<br>reduction<br>∫ sin <sup>n</sup> xc<br>paramete | <b>Calculus:</b> Reduction f<br>formulae of the ty<br>$\cos^m x$ dx and $\int cc$<br>erizing a curve, arc lenged<br>curve volume and | formulae, derivations and illustrations of<br>ype $\int \sin^n x  dx$ , $\int \cos^n x  dx$ , $\int \tan^n x  dx$ ,<br>$\cos^m x.cosnx  dx$ , parametric equations,<br>gth, arc length of parametric curves, Area<br>area of surface of revolution. | 10 1      |
|                         | s                                                          | essional Internal Asses<br>A – Internal written<br>B – Over All Perform                                                              | ssment (SIA) Full Marks – 25 Marks<br>Examination – 20 Marks (1 Hr)<br>mance including Regularity – 05 Marks                                                                                                                                        |           |
|                         | Recommen<br>Dwivedi, Ca                                    | Jaulue 1st Edition Pra                                                                                                               | ngati Prakashan, Meerut, India (2019).<br>avis (2016). Calculus (10th edition). Wiley                                                                                                                                                               | India     |

| rogram.                                  | Certificate                                                                                                                    | Year: First                                                                                                                                                                                                                                          | Semester: II                                                                                                                                                                                                             |                        |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| lass: UG                                 | Continue                                                                                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                        |  |
| ubject: N                                | <b>Iathematics</b>                                                                                                             |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                        |  |
|                                          | 1 3413                                                                                                                         | Course Title: Matrices                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                        |  |
| Cours                                    | e Learning (                                                                                                                   | Dutcomes: This course will                                                                                                                                                                                                                           | lenable the students to.                                                                                                                                                                                                 | dering                 |  |
| a) Ur<br>pr<br>fu<br>b) Ga<br>oj<br>c) G | nderstand and<br>operty, division<br>ndamental the<br>ain a thoroug<br>perations, inve<br>ain a strong gen<br>natrices, consis | apply fundamental conte<br>on algorithm, congruence<br>corem of arithmetic.<br>h understanding of matri<br>rrtibility, matrix rank, norm<br>rasp of systems of linear ec<br>stency (both necessary and                                               | e relations, mathematical Induction, ar<br>ces, including types of matrices, determ<br>al forms, and the rank-nullity theorem<br>quations, including their matrix form, aug<br>d sufficient conditions), and methods for | ninants,<br>mented     |  |
|                                          | (Theory)                                                                                                                       | Compulsory                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                        |  |
| Full Ma                                  | rks: 75                                                                                                                        | Time: 3 Hours                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          | Hours                  |  |
| Unit                                     |                                                                                                                                | Con                                                                                                                                                                                                                                                  | tent Division                                                                                                                                                                                                            | nouis                  |  |
| I                                        | algorithm, D<br>integers, Pri<br>Arithmetic,                                                                                   | nciples of Mathematical                                                                                                                                                                                                                              | erty (WOP) of positive integers, Division<br>gorithm, Congruence relation between<br>Induction, Fundamental Theorem of                                                                                                   | 15 h                   |  |
| II                                       | Matrices: Ma<br>submatrix, b<br>of a matrix, I                                                                                 | Matrices: Matrices and types of matrices, determinants, operations on matrices,<br>submatrix, block Matrix, Invertible Matrices, Uniqueness of Inverse Matrix, Rank<br>of a matrix, Normal form PAQ, Canonical or Echelon form, Rank-Nullity Theorem |                                                                                                                                                                                                                          |                        |  |
| 111                                      | System of augmented                                                                                                            | matrix, consistent and in                                                                                                                                                                                                                            | form of system of linear equations,<br>neonsistent system of linear equations,<br>nsistency of a system of linear equations,<br>nd non-homogeneous linear equations.                                                     | 15 h                   |  |
| IV                                       | Eigen value<br>Eigen value                                                                                                     | s and Eigen vectors of matres and Eigen vectors, A.M.                                                                                                                                                                                                | and G.M. of Eigen values, Theorems on<br>al Polynomial, Cayley-Hamilton theorem.                                                                                                                                         |                        |  |
|                                          | S                                                                                                                              | essional Internal Assessm<br>A – Internal written Ex<br>B – Over All Performa                                                                                                                                                                        | ent (SIA) Full Marks – 25 Marks<br>camination – 20 Marks (1 Hr)<br>nce including Regularity – 05 Marks                                                                                                                   |                        |  |
| 1. Da<br>2. Va<br>3. Be<br>e<br>4. Da    | sishtha A. R.,<br>rnard Kolmar<br>dition). Pears<br>wid C. Lay, St                                                             | A (2007). Elementary Nur<br>Vasishtha A. K. (2011). N<br>A & David R. Hill (2003). H<br>Son Education Pvt. Ltd. In<br>even R. Lay & Judi J. McC                                                                                                      | 1011alu (2010). Enteur 118                                                                                                                                                                                               | ations (7<br>pplicatio |  |

| Program: C                                                                 | ertificate                                                                                                                                                                                            | Year: First                                                                                                                                                                            | Sem                                                                                                                                                                                                     | ester: II                                                                                                                                                   |                                           |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Class: UG                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                                                         |                                                                                                                                                             |                                           |  |
| Subject: M                                                                 | athematics                                                                                                                                                                                            |                                                                                                                                                                                        | 1 C                                                                                                                                                                                                     | rigonometry                                                                                                                                                 |                                           |  |
| 2 0-                                                                       | In MATS                                                                                                                                                                                               | Course Title: Anal                                                                                                                                                                     | he Geometry and 1                                                                                                                                                                                       | ngonometry                                                                                                                                                  |                                           |  |
| a) Dev<br>rec<br>and<br>b) Gai<br>dir<br>thr<br>c) Ga<br>ge<br>d) De<br>th | relop skills in<br>tangular axes,<br>d understandir<br>n proficiency<br>ection cosine<br>ough a given o<br>in the ability t<br>nerating lines,<br>evelop concept<br>eorem, and its<br>evelop proficie | reduction of general<br>ng the polar equation<br>s, straight lines, plan<br>circle, cones, and cylin<br>o analyze and classif<br>reduce equations to r<br>ts in trigonometry, incl     | aquations to normal to<br>of conics.<br>It analytical geomet<br>s, spheres, intersec-<br>ders.<br>onicoids, understance<br>normal form, and clas<br>unling the polar form of<br>ormatic function explan | form, analysis of conic sy<br>ry, including the conce<br>cting spheres, spheres<br>I their plane sections, def<br>sify quadrics.<br>of complex numbers, DeN | epts of<br>passing<br>cermine<br>Aoivre's |  |
|                                                                            | (Theory)                                                                                                                                                                                              | Compulsory                                                                                                                                                                             | 4.1                                                                                                                                                                                                     |                                                                                                                                                             |                                           |  |
| Full Mar                                                                   |                                                                                                                                                                                                       | Time: 3 Hours                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                                             | Hours                                     |  |
| Unit                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                        | Content                                                                                                                                                                                                 | . C                                                                                                                                                         | moure                                     |  |
| 1                                                                          | Analytical geometry of two dimensions: Transformation of rectangular<br>axes, General equation of second degree and its reduction to normal<br>form, Systems of conies, Polar equation of a conic.    |                                                                                                                                                                                        |                                                                                                                                                                                                         |                                                                                                                                                             |                                           |  |
| 11                                                                         | Analytical ge<br>Plane, Spher                                                                                                                                                                         | eometry of three din<br>re, Two Intersecting<br>der.                                                                                                                                   | nensions: Direction<br>Spheres, Spheres T                                                                                                                                                               | cosines, Straight line,<br>hrough a Given Circle                                                                                                            | 15 h                                      |  |
| 111                                                                        | Conicoid: C<br>Generating                                                                                                                                                                             | <b>Conicoid:</b> Central conicoids, paraboloids, plane sections of conicoids,<br>Generating lines. Reduction of second-degree equations to normal form;<br>classification of quadrics. |                                                                                                                                                                                                         |                                                                                                                                                             |                                           |  |
| IV                                                                         | Trigonome<br>De-Moivre<br>expansions                                                                                                                                                                  | try: Polar form of<br>s Theorem, Appli<br>trigonometric fun                                                                                                                            | calons of De-M<br>ction, Hyperbolic                                                                                                                                                                     | nth roots of unity,<br>oivre's Theorem in<br>function, Exponential                                                                                          | 15                                        |  |
|                                                                            | Se                                                                                                                                                                                                    | ssional Internal Asses                                                                                                                                                                 | sment (SIA) Full Ma<br>Examination – 20 M<br>mance including Reg                                                                                                                                        | 141 h5 (1 111)                                                                                                                                              |                                           |  |
| Books                                                                      | Recommend                                                                                                                                                                                             | led:                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                             |                                           |  |
| 1. Lo<br>2. Sh<br>3. Be<br>4. Ch<br>5. Ch<br>6. Ti                         | ney, S. L., El<br>anti Narayan<br>II, R- J. T., E<br>aki, M. C, A<br>akraborty, J.<br>tu Andreescu                                                                                                    | ements of Coordinat<br>, Analytical Geometr<br>lementary Treatise o<br>Textbook of Analyt<br>G., and Ghosh, P. R<br>, & Dorin Andrica (2                                               | n Coordinate Geom<br>ical Geometry, Calc                                                                                                                                                                | utta Publishers.                                                                                                                                            | nd                                        |  |
| ed                                                                         | ition). Birkha                                                                                                                                                                                        | autoor.                                                                                                                                                                                |                                                                                                                                                                                                         | ariables and Applicatio                                                                                                                                     |                                           |  |

 James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 8th Ed., McGraw — Hill International Edition. Mfg)

|                            |                                                                        | Year: Second                                                                                                                | Semester: III                                                                                                                                                                                                                                                      |          |
|----------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Program: D                 | iploma                                                                 | y ear: Second                                                                                                               |                                                                                                                                                                                                                                                                    |          |
| Class: UG                  | thomation                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                    |          |
|                            | athematics                                                             | Course Title: Real                                                                                                          | Analysis                                                                                                                                                                                                                                                           |          |
| Course Coo                 |                                                                        | TI '                                                                                                                        | will anable the students to:                                                                                                                                                                                                                                       |          |
| a) Unc<br>fron             | lerstand many $\mathbb{R}$ to a subset                                 | properties of the real left<br>et of R.                                                                                     | time R and learn to define sequence in terms of a                                                                                                                                                                                                                  |          |
| c) App<br>con              | r limit superi<br>bly the ratio, f<br>wergence of a<br>orn some of     | or, limit inferior, and the root, alternating series                                                                        | and limit comparison tests for convergence and                                                                                                                                                                                                                     | absolute |
| Credit: 4 (                | Theory)                                                                | Compulsory                                                                                                                  |                                                                                                                                                                                                                                                                    |          |
| Full Mark                  | s: 75                                                                  | Time: 3 Hours                                                                                                               |                                                                                                                                                                                                                                                                    | 11       |
| Unit                       | 7431 - AV (2000)                                                       | (                                                                                                                           | Content                                                                                                                                                                                                                                                            | Hours    |
| I I                        | and infimum                                                            | Absolute value of a                                                                                                         | real number; Bounds of a sets, Supremum<br>et of $\mathbb{R}$ , The completeness property of $\mathbb{R}$ ,<br>n and types of intervals, Neighborhood of<br>rfect sets in $\mathbb{R}$                                                                             | 15 h     |
| 11                         | Convergent<br>theorems, M<br>Monotone<br>Limit super                   | Aonotone sequences<br>convergence theoren<br>ior and limit inferior<br>Cauchy's first theo                                  | a sequence, Bounded sequence, Limit<br>, Weierstrass' theorem for sequences,<br>m, Subsequences, Bolzano sequences,<br>of a sequence of real numbers, Cauchy<br>prem on limit, Cauchy's convergence<br>of set of real number.                                      | 15 h     |
| 111                        | Infinite Ser<br>Convergence<br>Necessary<br>Tests for co<br>comparison | ries<br>ce and divergence of<br>condition for conver<br>onvergence of positiv<br>n test, D'Alembert's<br>condensation Test. | f infinite series of positive real numbers,<br>gence, Cauchy criterion for convergence;<br>re term series; Basic comparison test, Limit<br>ratio test, Raabe's test, Logarithmic test,<br>De Morgan & Bertrand's test, Higher<br>auchy's root test, Integral test; | 20 h     |
| IV                         | conditiona                                                             | l convergence. Prope                                                                                                        | ng series, Leibniz test, Absolute and erties of absolutely convergent series.                                                                                                                                                                                      | 10 h     |
| Sessional                  | Internal As                                                            | sessment (SIA) Full M                                                                                                       | Aarks - 25 Marks<br>Examination - 20 Marks (1 Hr)<br>nance including Regularity - 05 Marks                                                                                                                                                                         |          |
| 1. Rea<br>2. Rea<br>3. Rea | al Analysis:<br>al Analysis:                                           | Dasgupta & Prasad<br>Lalji Prasad                                                                                           | alik                                                                                                                                                                                                                                                               |          |

4

|                         | Distance                                                 | Year: Second                                                                     | Semester: III                                                                                                                                                               |       |
|-------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Program: I              | Dipionia                                                 | Tour. Decond                                                                     |                                                                                                                                                                             |       |
| Class: UG               |                                                          |                                                                                  |                                                                                                                                                                             |       |
| Subject: M              | Iathematics                                              | Course Title: Vectors                                                            |                                                                                                                                                                             |       |
|                         | ode: MJ-5                                                | the course wil                                                                   | Lenable the students to:                                                                                                                                                    |       |
| a) Unc<br>b) Unc<br>fun | lerstand the con<br>lerstand the con<br>ctions, Grad, Cu | cepts of scalar & vector p<br>cept of vector function of<br>irl and Divergence.  | roducts of three and four vectors.<br>scalar variable t, Scalar point functions, ve<br>double and triple integral formulations<br>kes' theorems in other branches of mather |       |
| Credit: 4               | (Theory)                                                 | Compulsory                                                                       |                                                                                                                                                                             |       |
| Full Mar                | ks: 75                                                   | Time: 3 Hours                                                                    |                                                                                                                                                                             | Hours |
| Unit                    |                                                          | Con                                                                              | tent                                                                                                                                                                        | Hours |
| I                       | system of vec<br>force. Couple                           | tors, Lami's theorem. λ                                                          | Product of 3 & 4 vectors, Reciprocal $-\mu$ theorem, work done, Moment of                                                                                                   | 15 h  |
| 11                      | derivative an                                            | d geometrical meaning                                                            | unction of scalar variable t, it's<br>, Derivative of product of two and                                                                                                    | 15 h  |
| ш                       | Grad, Dive<br>function, gr                               | rgence & Curl: Scal<br>ad, divergence and c                                      | ar point function and vector point<br>curl, their expansion formulae and                                                                                                    | 15 h  |
| IV                      | Applications<br>line integrals<br>integral, Su           | s of line integrals: Mass<br>s, Conservative vector f<br>irface integrals, Stoke | vergence theorem: Line integrals,<br>and Work, Fundamental theorem for<br>fields, Green's theorem, Area as a line<br>s' theorem, The Gauss divergence                       | 15 h  |
|                         | l Internal Asse                                          | B Over All Performance                                                           | s 25 Marks<br>nination 20 Marks (1 Hr)<br>e including Regularity 05 Marks                                                                                                   |       |
| 1.                      | Advanced Eng                                             | ed:<br>vineering Mathematics (10<br>vsis: Lalji Prasad, Paran                    | )th edition). Erwin Kreyszig, Wiley<br>10 <b>unt</b>                                                                                                                        |       |

|                       | Dinloma                                | Year: Second                                                                   | Semester: IV                                                                                                  |       |
|-----------------------|----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|
| rogram: J<br>lass: UG | Diploma                                | 1 cur. Decome                                                                  |                                                                                                               |       |
|                       |                                        |                                                                                |                                                                                                               |       |
| 0                     | <b>Mathematics</b><br>ode: <b>MJ-6</b> | Course Title: Real Anal                                                        | ysis & Set theory                                                                                             |       |
|                       | · Outcomo                              | . This course will enable the                                                  | e students to:                                                                                                |       |
|                       |                                        |                                                                                |                                                                                                               |       |
| 1.3. 1.1              | arctand the co                         | ncent of differentiation and                                                   | expansion of function with terms                                                                              |       |
| b) Und                | erstand the de                         | finition and condition for Ri                                                  | emann Integrability.                                                                                          |       |
| c) Und                | erstand the de                         | neralized set operations an                                                    | d relation on sets.                                                                                           |       |
| d) Und                | erstand the ge                         | ileralized set operation                                                       |                                                                                                               |       |
| Cradit: 4             | (Theory)                               | Compulsory                                                                     |                                                                                                               |       |
| Full Mar              |                                        | Time: 3 Hours                                                                  |                                                                                                               | TI    |
|                       |                                        | Conte                                                                          | ent                                                                                                           | Hours |
| Jnit                  | continuity 1                           | Continuity: Limit, Con<br>properties of functions<br>bounded variation.        | tinuity, Discontinuities, uniform<br>continuous in closed intervals,                                          | 15 h  |
|                       |                                        |                                                                                | Talaria theorom Maclaurin's                                                                                   |       |
|                       | Derivability,                          | Relationship with continu                                                      | uity, Taylor's theorem, Maclaurin's                                                                           | 15 h  |
| п                     | sinx, cosx a                           | nd log (1+x) using suital                                                      | Power series expansion of (1+x) <sup>n</sup> ,<br>ble remainder after n terms.                                | 15 11 |
| 111                   | condition, p                           | articular classes of bour                                                      | boux's theorem I & II. Integrability<br>ded integerable function primitive,<br>and Mean value theorem.        | 15 h  |
| IV                    | Index famil                            | y of sets, Generalised se<br>napping: Countable an<br>d related fundamental th | t operations & De-Morgan Laws, set<br>d Uncountable sets, Equivalence<br>neorem on partition. Partial order & | 15 t  |
| Sessiona              | l Internal Ass                         | essment (SIA) Full Marks<br>A Internal written Exam<br>B Over All Performance  | 25 Marks<br>ination 20 Marks (1 Hr)<br>including Regularity 05 Marks                                          |       |
| Books                 | Recommend                              |                                                                                |                                                                                                               |       |
| 1                     | 1. 10000 1 100                         |                                                                                |                                                                                                               |       |
|                       | 2 Real An                              | alysis by K. K. Jha                                                            |                                                                                                               |       |

| Program:<br>Class: UC | Diploma<br>G                                         | Year: Second                                                                                                                              | Semester: IV                                                               |                |  |
|-----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|--|
| Subject: I            | Mathematics                                          |                                                                                                                                           |                                                                            |                |  |
| Course C              | ode: MJ-7                                            | Course Title: Ordinary                                                                                                                    | y Differential Equation                                                    |                |  |
| a)<br>b)<br>c)        | solve ordinary<br>solve higher of<br>particular inte | order differential equation u<br>ogral.<br>y differential equation with                                                                   | using concept of complimentary function                                    | ificance.<br>& |  |
| Credit: 4             | (Theory)                                             | Compulsory                                                                                                                                |                                                                            |                |  |
| Full Mar              |                                                      | Time: 3 Hours                                                                                                                             |                                                                            |                |  |
|                       |                                                      | Content                                                                                                                                   |                                                                            | Hours          |  |
| I                     | solvable for orthogonal t                            | rajectories.                                                                                                                              | y differential equations, Equation<br>Clairaut's form, singular solution   | 15 h           |  |
| II                    | Homogeneo                                            | Linear Differential Equation of higher order with constant coefficients.Homogeneous linear differential equation (Cauchy- Euler's Form)15 |                                                                            |                |  |
| III                   | first derivativation of                              | tive) solution by chang parameters.                                                                                                       | uations: Normal forms (removal of<br>ging independent variable and by      | 15 h           |  |
| IV                    | equation significance                                | Pdx+Qdy+Rdz=0 togo                                                                                                                        | r/Q = dz/R and Total differential<br>ether with their geometrical          | 15 h           |  |
| Sessiona              |                                                      | essment (SIA) Full Marks<br>A Internal written Exami<br>B Over All Performance                                                            | . 25 Marks<br>ination . 20 Marks (1 Hr)<br>including Regularity . 05 Marks |                |  |
| Books                 | Recommende                                           | ed:                                                                                                                                       |                                                                            |                |  |
|                       | 1. Differentia                                       | al Equation by Lalji Prasa                                                                                                                | ad                                                                         |                |  |
|                       | 2. Advanced                                          | differential equation by                                                                                                                  | M. D. Kaisingnania                                                         |                |  |
| 8                     |                                                      | al equation by J. N. Shari                                                                                                                |                                                                            |                |  |

| D! 1              |                                                                                                                                                | Year: Second                              | Semester: IV                          |          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|----------|
| Program: Diplo    | ma                                                                                                                                             | Teal. Second                              |                                       |          |
| Class: UG         |                                                                                                                                                |                                           |                                       |          |
| Subject: Mathe    | matics                                                                                                                                         | Course Title: Group Theor                 | rv                                    |          |
| Course Code: N    | 1J-8                                                                                                                                           | Course Title. Group Theor                 | udents to:                            |          |
| Course Learning C | )utcomes:                                                                                                                                      | This course will enable the st            |                                       |          |
| a) Understa       | nd concep                                                                                                                                      | ot of groups & their properties           | - arouns                              |          |
| b) Understa       | nd the cor                                                                                                                                     | ncept of subgroups and cyclic             | groups.                               |          |
| c) Understa       | nd the cor                                                                                                                                     | ncept of Factor group, centrali           | Izer and normalizer of group          | perties. |
| d) Understa       | nd the co                                                                                                                                      | ncept of Homomorphism in G                | roup & Isomorphism and related pro    |          |
| C l't (The        | ()                                                                                                                                             | Compulsory                                |                                       |          |
| Credit: 4 (The    |                                                                                                                                                | Time: 3 Hours                             |                                       |          |
| Full Marks: 75    |                                                                                                                                                | Content                                   |                                       | Hours    |
| Unit              | ition ond                                                                                                                                      | examples of groups inclu                  | iding dihedral, permutation and       | 15 h     |
| I Defin           | mion are                                                                                                                                       | oups, Elementary properties               | of groups.                            | 15 11    |
| I quate           | mon gro                                                                                                                                        | rups, Elementary Part                     | L' Properties of cyclic               |          |
| Subg              | Subgroups and examples of subgroups, Cyclic groups, Properties of cyclic groups, Classification of subgroups of cyclic groups, Order of group, |                                           |                                       |          |
| II grou           | os. Class                                                                                                                                      | ification of subgroups of a               | cyclic groups, Order of group,        | 15 h     |
| T                 | an an' a th                                                                                                                                    | eorem                                     |                                       |          |
|                   |                                                                                                                                                | Normal subgroups                          | , Simple groups, Factor groups,       |          |
|                   |                                                                                                                                                | f - finite abalian aroun                  | s' l'entralizer, i vonnanzer, e entre | 15 h     |
| III of a          | my strict                                                                                                                                      | Cycle notation for permutat               | ions, Properties of permutations,     | 15 11    |
| III of a          | group, c                                                                                                                                       | I permutations, alternating g             | roups,                                |          |
| Ever              |                                                                                                                                                |                                           | of homomorphisms, Group               | 1        |
| Gro               | up hom                                                                                                                                         | nomorphisms, Properties                   |                                       | 15 h     |
| IV ison           | norphism                                                                                                                                       | s, Properties of isomorph                 | isms; Fundamental theorem of          |          |
| hor               | omorphi                                                                                                                                        | sm. Cavley's theorem and I                | is applications.                      |          |
| Sessional Inter   | rnal Asses                                                                                                                                     | ssment (SIA) Full Marks 25                | Marks                                 |          |
|                   | A                                                                                                                                              | A Internal written Examinat               | luding Regularity . 05 Marks          |          |
|                   |                                                                                                                                                |                                           |                                       |          |
| Books Reco        | mmende                                                                                                                                         | d:                                        | eruddin                               |          |
| 1. Modern         | Algebra:                                                                                                                                       | Surjeet Singh Quazi Zamee<br>A R Vasistha |                                       |          |
|                   |                                                                                                                                                |                                           |                                       |          |
| 4. A First (      | Course in                                                                                                                                      | Abstract Algebra: J. B. Fra               | leigh                                 |          |

| Program: I                                 | <b>Bachelor's Degree</b>                                                                                      | Year: Third                                                                                                                                                                                                                                                                                                     | Semester: V                                                                                                                   |         |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Class: UG                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |         |  |
| Subject: N                                 | <b>Aathematics</b>                                                                                            | Course Title: Mec                                                                                                                                                                                                                                                                                               | hanics                                                                                                                        |         |  |
| Course Co                                  | ning Outcomes: This con                                                                                       |                                                                                                                                                                                                                                                                                                                 | de etc to:                                                                                                                    |         |  |
| a) Unc<br>lear<br>b) Unc<br>rela<br>c) Dea | derstand necessary cond<br>in the principle of virtua<br>derstand the concept of                              | I work for a system of<br>friction and laws of fr<br>of the rectilinear and<br>tions of particles.                                                                                                                                                                                                              | coplanar forces acting on a rigid body<br>iction. Student will be able to solve p<br>d planar motions of a particle inclu     | oroblem |  |
| 0 14 4                                     | (Theom)                                                                                                       | Compulsory                                                                                                                                                                                                                                                                                                      |                                                                                                                               |         |  |
| Credit: 4                                  | (Theory)                                                                                                      | Time: 3 Hours                                                                                                                                                                                                                                                                                                   |                                                                                                                               |         |  |
| Full Mar<br>Unit                           |                                                                                                               | Content                                                                                                                                                                                                                                                                                                         |                                                                                                                               | Hours   |  |
| I                                          | for equilibrium, asta<br>virtual work for a s<br>different points of a r                                      | Reduction of system of coplanar forces, equation of resultant. Condition<br>for equilibrium, astatic centre. Work and potential energy, Principle of<br>virtual work for a system of coplanar forces acting on a particle or at<br>different points of a rigid body, Forces which can be omitted in forming the |                                                                                                                               |         |  |
| II                                         | Laws, Angles and constrained                                                                                  | one of friction, equili<br>I to move on a roug                                                                                                                                                                                                                                                                  | brium on a rough inclined plane,<br>h curve under any given forces.                                                           | 15 h    |  |
| Ш                                          | Kinematics in two<br>velocities and ac                                                                        | dimensions: tanger<br>cceleration. Angula                                                                                                                                                                                                                                                                       | ntial, normal, radial, transverse<br>ar Velocity and acceleration.<br>m: S.H.M., compounding of two<br>er inverse square law. | 15 h    |  |
| IV                                         | Rectilinear Motion<br>principle, impulse,                                                                     | (Kinetics): Newton                                                                                                                                                                                                                                                                                              | 's Law, work, KE, work Energy<br>lar momentum, conservation of<br>entum, Hooke's law. Extension of                            |         |  |
| Sessiona                                   | al Internal Assessment<br>A Inter<br>B Over                                                                   | (SIA) Full Marks 25<br>rnal written Examina<br>· All Performance inc                                                                                                                                                                                                                                            | 5 Marks<br>tion 20 Marks (1 Hr)<br>luding Regularity 05 Marks                                                                 |         |  |
| 1. 2.                                      | s Recommended:<br>Mechanics: Singh &<br>Statics and Dynamics.<br>Statics. S. Ramsey Ca<br>Dynamics. S. Ramsey | A. R. Vashishtha Kris<br>mbridge University Pr                                                                                                                                                                                                                                                                  | C55.                                                                                                                          |         |  |

|            |                                                                                                                                                                                                                   | Year: Third                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Semester: V                                                         |       |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|--|
| rogram:    | <b>Bachelor's Degree</b>                                                                                                                                                                                          | real. Innu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |       |  |
| lass: UG   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
| Subject: N | Mathematics                                                                                                                                                                                                       | Course Title The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ory of Equation & Higher Arithm                                     | netic |  |
|            | ode: MJ-10                                                                                                                                                                                                        | will enable the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | udents to:                                                          |       |  |
| ourse Lean | ode: MJ-10<br>ming Outcomes: This converse<br>ve polynomial equation                                                                                                                                              | using relation of roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and coefficients                                                    |       |  |
| a) solv    | ve polynomial equation                                                                                                                                                                                            | don's method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |       |  |
| b) sol     | ve cubic equation by Car                                                                                                                                                                                          | appropriate and their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ir properties.                                                      |       |  |
| c) un      | derstand the concept of                                                                                                                                                                                           | congruences and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |       |  |
| d) sol     | ive simultaneous linear o                                                                                                                                                                                         | ongruences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |       |  |
|            |                                                                                                                                                                                                                   | Compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |       |  |
|            | (Theory)                                                                                                                                                                                                          | Time: 3 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | Hours |  |
| Full Ma    | rks: 75                                                                                                                                                                                                           | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fi siento                                                           | Hours |  |
| Unit       | Relations of root and their symmetric functions with coefficients.                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
| I          | Transformation of equations, Descared a                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
| 1          | Transformers                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Descarto's solution of a bi-                                        |       |  |
|            | Cardon's solution o                                                                                                                                                                                               | if a cubic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n, Descarte's solution of a bi-<br>ature of roots.                  | 15 h  |  |
| II         | quadratic equation,                                                                                                                                                                                               | Discriminante ana m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |       |  |
|            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e factorization in N & Z the ue class, complete and reduced         |       |  |
|            | Divisibility, H.C.F.                                                                                                                                                                                              | Primes & Onique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ue class, complete and reduced                                      | 15 h  |  |
|            | Divisibility, H.C.F. Primes & Unique factorization in the and reduced<br>Diophantine equation ax+by=c. Residue class, complete and reduced<br>residue system, congruences and their properties, Fermat's theorem, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
| III        | Euler's theorem, and Wilson's theorem.                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
|            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | increation Solution of                                              |       |  |
|            | Algebraic congru                                                                                                                                                                                                  | ences, Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | by inspection. Solution of<br>theorem, non-linear algebraic<br>lus. | 151   |  |
| TAT        | $ax \equiv b \pmod{m}$ , Ch                                                                                                                                                                                       | ninese remainder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | us.                                                                 | 1.0.  |  |
| IV         | congruency with re                                                                                                                                                                                                | espect to the modul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |       |  |
|            | al Internal Assessment                                                                                                                                                                                            | (SIA) Full Marks 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 Marks                                                             |       |  |
| Session    | al Internal Assessment                                                                                                                                                                                            | rnal written Examina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation 20 Marks (1 Hr.)<br>cluding Regularity 05 Marks               |       |  |
|            | B Over                                                                                                                                                                                                            | All Performance inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cluding Regularity 05 Marks                                         |       |  |
| Pool       | - Decommended:                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |       |  |
|            | mi faquation'                                                                                                                                                                                                     | alji Prasad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |       |  |
| 2          | Theory of Equation -                                                                                                                                                                                              | - Durnside of ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                   |       |  |
| 3.         | Basic Number theory<br>Introduction to Num                                                                                                                                                                        | ber Theory : Niven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | & Zukerman                                                          |       |  |
| 4.         | Introduction to Harr                                                                                                                                                                                              | and the second |                                                                     |       |  |

| Course Title: Con                                                                                                                                                              | mplex Analysis                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| uity & amerentiability                                                                                                                                                         | orranoes                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ic function & form and                                                                                                                                                         | hytic function.                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| formations.                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| conformal mapping.                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Compulsory                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Time: 3 Hours                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       | Hours                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Content                                                                                                                                                                        | the second displacet                                                                                                                                                                                                                                                                                                  | Hours                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Real Functions for two variables. Simultaneous and iterated limits;<br>continuity, partial derivatives, differentiability, and related necessary<br>and sufficient conditions. |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| lex variables: Limit<br>inalytic function, ha<br>in Thompson Method                                                                                                            | 1.                                                                                                                                                                                                                                                                                                                    | 15 h                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Geometric Importance of some standard transformations e.g. $w = z + c$<br>$w = cz \ w = 1/z, \ w = (az + b) / (cz + d) (bilinear).$                                            |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| nformal transformat                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                       | 15 h                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| SIA) Full Marks 25                                                                                                                                                             | Marks<br>ion 20 Marks (1 Hr.)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                | urse will enable the stuuity & differentiabilityic function & form anaformations.conformal mapping.Time: 3 HoursContenttwo variables. Similarerivatives, differentons.lex variables: Limitanalytic function, han Thompson Methodce of some standar $(z + b) / (cz + d)$ (bilinmation as transformalSIA) Full Marks 25 | Compulsory         Time: 3 Hours         Content         wo variables. Simultaneous and iterated limits;         erivatives, differentiability, and related necessary         ons.         lex variables: Limit, continuity, derivative Cauchy         analytic function, harmonic function, construction of         n Thompson Method.         ce of some standard transformations e.g. $w = z + c$ |  |

| Program'      | Bachelor's Degree                                                                                             | Year: Third                                                                     | Semester: VI                                                                                        |       |
|---------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
| Class: U      |                                                                                                               |                                                                                 |                                                                                                     |       |
|               | Mathematics                                                                                                   |                                                                                 |                                                                                                     |       |
| C             | Code: ML-12                                                                                                   | Course Title: Dyna                                                              | amics & Statics                                                                                     |       |
| Course Lea    | rning Outcomes: This cou                                                                                      | urse will enable the stu                                                        | udents to:                                                                                          |       |
| a) ap         | ply the condition for equi                                                                                    | librium in problems.                                                            |                                                                                                     |       |
| b) co         | we problems related to co                                                                                     | ommon catenary.                                                                 |                                                                                                     |       |
| c) so         | lve problems related to g                                                                                     | ravitation % Newton's                                                           | laws of motion.                                                                                     |       |
| d) so         | lve problems related to p                                                                                     | rojectile.                                                                      |                                                                                                     |       |
| Credit: 4     | 4 (Theory)                                                                                                    | Compulsory                                                                      |                                                                                                     |       |
| Full Ma       |                                                                                                               | Time: 3 Hours                                                                   |                                                                                                     | Hours |
| Unit          |                                                                                                               | Content                                                                         | Wrench nitch                                                                                        |       |
| I             | Conditions for equilibrium of forces in three dimensions. Wrench pitch,<br>Null Lines.                        |                                                                                 |                                                                                                     |       |
| II            | (problems involving (                                                                                         | one variable only).                                                             | m, energy test of stability                                                                         | 15 h  |
| III           | Motion of a particle<br>central orbit in both<br>gravitation, planetar                                        | under a central fo<br>polar and pedal<br>y orbits, Kepler's la                  | rce, Differential equation of a co-ordinates. Newton's law of ws of motion.                         | 15 h  |
| IV            | Motion of projectile of<br>the mass centre and<br>principle. Two-dimer<br>axis, compound pen                  | under gravity in a n<br>d motion relative to<br>nsional motion of a n<br>dulum. | on-resisting medium. Motion of<br>the mass centre D'Alembert's<br>rigid body rotating about a fixed | 15 h  |
|               | B Over /                                                                                                      | SIA) Full Marks 25<br>al written Examinati<br>All Performance inclu             | Marks<br>on 20 Marks (1 Hr.)<br>uding Regularity 05 Marks                                           |       |
| 1.<br>2.<br>3 | Recommended:<br>Dynamics Part I & II A<br>Dynamics by P.P. Gup<br>Statics by Loney<br>Statics by A. R. Vasist | ta, Sanjay Gupta                                                                |                                                                                                     |       |

| Program:<br>Class: UG                      | Bachelor's Degree                                                                                                                             | Year: Third                                                               | Semester: VI                                 |        |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--------|
|                                            | Aathematics                                                                                                                                   |                                                                           | 9. Otatiotion                                |        |
| 0 0                                        | Ja. MI 13                                                                                                                                     | Course Title: LPP                                                         | & Statistics                                 |        |
| ourse Lear<br>a) solv<br>b) solv<br>c) stu | ning Outcomes: This couve<br>reproblems related to his<br>ve problems related to his<br>dy the nature of curve, f<br>dy correlation and do re | ansportation & assign<br>ansportation & assign<br>it a suitable curve for | iment problems.                              |        |
| Cradit: 4                                  | (Theory)                                                                                                                                      | Compulsory                                                                |                                              |        |
| Full Mar                                   |                                                                                                                                               | Time: 3 Hours                                                             |                                              | Hours  |
| Unit                                       |                                                                                                                                               | Content                                                                   | for a station                                | Tiours |
| I                                          | Graphical Method. Si                                                                                                                          | mplex method.                                                             |                                              | 15 h   |
| II                                         | Transportation and                                                                                                                            | Assignment. Deter<br>s on two machines a                                  | rministic replacement models,<br>and n jobs. | 15 h   |
| 111                                        | Measures of Skewness and Kurtosis. Curve fitting and method of least                                                                          |                                                                           |                                              |        |
| IV                                         |                                                                                                                                               |                                                                           | ctations and variance.                       | 15 h   |
| Sessiona                                   | B Over a                                                                                                                                      | All Performance inch                                                      | uding Regularity 05 Marks                    |        |
| 1. l<br>2. l                               | Linear Programming P<br>Linear Programming P<br>Operations Research:<br>Mathematical Statistic                                                | S D Sharma                                                                |                                              |        |

|                      |                                                                                                                                                                  | Year: Third                        | Semester: VI                                                                                  |       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|-------|
| Program:             | <b>Bachelor's Degree</b>                                                                                                                                         | real. I mitu                       |                                                                                               |       |
| Class: UG            |                                                                                                                                                                  |                                    |                                                                                               |       |
| Subject: N           | Iathematics                                                                                                                                                      | Course Title: Analys               | is II & Ring                                                                                  |       |
| Course C             | ode: MJ-14                                                                                                                                                       | Course Thie. Analys                | ents to:                                                                                      |       |
| Course Lear          | ming Outcomes: This col                                                                                                                                          | urse will enable the stude         |                                                                                               |       |
| a) tes               | t the convergence of imp                                                                                                                                         | theoroms like Green's              | theorem, Stokes theorem.                                                                      |       |
| b) sol               | ve multiple integrals usir                                                                                                                                       | ig theorems like oreen s           |                                                                                               |       |
| c) une               | derstand the concept of                                                                                                                                          | ring and ideals.                   |                                                                                               |       |
| d) exp               | plain the concept of field                                                                                                                                       | & homeomorphism.                   |                                                                                               |       |
| Credit: 4            | (Theory)                                                                                                                                                         | Compulsory                         |                                                                                               |       |
| Full Mar             | ·ks: 75                                                                                                                                                          | Time: 3 Hours                      |                                                                                               | Hours |
| Unit                 |                                                                                                                                                                  | Content                            | Absolute                                                                                      |       |
| I                    | convergence, Able's                                                                                                                                              | inter-relation.                    | omparison Tests, Absolute<br>s. Frullani's Integrals, Def.                                    | 15 h  |
| II                   | of order of integratio<br>Integral, Surface In<br>Gauss divergence th                                                                                            | tegral, Green's theor<br>eorem.    | Liouville's extension. Change<br>bles. Vector Integration: Line<br>em in R2, Stoke's theorem, | 15 h  |
| III                  | Rings, Preliminary R                                                                                                                                             | esults, Special Kinds,             | subrings and Ideals. Quotient                                                                 |       |
| IV                   | Fields and Homomo                                                                                                                                                | iclidian ring & onique             | ent and embedding theorem,<br>factorization in it.                                            | 15 h  |
|                      | l Internal Assessment (<br>A Intern<br>B Over                                                                                                                    | SIA) Full Marks 25 M               | arks                                                                                          |       |
| 1.<br>2.<br>3.<br>4. | Recommended:<br>Mathematical Analysis<br>Mathematical Analysis<br>Integral Calculus: Wil<br>Vector Calculus: Shar<br>Modern Algebra: A. R<br>Modern Algebra: Goy | liamson<br>hti Narayan<br>Vasistha |                                                                                               |       |

| Program    | Bachelor's Degree                                                                      | Year: Third             | Semester: VI                                                                                   |        |
|------------|----------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|--------|
| Class: U   |                                                                                        |                         |                                                                                                |        |
| Subject:   | Mathematics                                                                            |                         | 1 1 1 2 0 Ducanammin                                                                           | a in C |
| Course     | Tode: MI-15                                                                            | Course Title: Nun       | nerical Analysis & Programmin                                                                  | gmc    |
| Course Lea | arning Outcomes: This cou                                                              | urse will enable the st | udents to:                                                                                     |        |
| a) fir     | nd roots of equation and i                                                             | nterpolate by numeric   | carmethous.                                                                                    |        |
| b) di      | fferentiate % integrate by                                                             | numerical methods.      | computer programming                                                                           |        |
| c) kr      | now about the logics and                                                               | algorithms needed for   | r computer programming.                                                                        |        |
| Curdity    | 4 (Theory)                                                                             | Compulsory              |                                                                                                |        |
| Full Ma    | 4 (Theory)                                                                             | Time: 3 Hours           |                                                                                                |        |
|            |                                                                                        | Content                 |                                                                                                | Hours  |
| Unit<br>I  | Polynomials. Interpol<br>differences Schemes,                                          | Interpolation Form      | falsi, Newton's method, Root of<br>d Hermite Interpolation, divided<br>hula using Differences. | 15 h   |
| П          | Quadrature Formula                                                                     | Simpsons and Trap       | ormulas. Numerical Integration<br>ezoidal Rule.                                                | 15 h   |
| III        | Types. Arithmetic<br>structures. Decisions                                             | statements.             | Algorithms. Flow Charts. Data instructions. Decision control                                   | 15 h   |
| IV         | Logical and Condit<br>Functions, Recursio<br>Structures. Pointers.                     | ns, Preprocessors.      | oop. Case control structures.<br>Arrays, Puppeting of string.                                  | 15 h   |
| Session    | al Internal Assessment (S<br>A Intern<br>B Over A                                      | - I witten Lyomingfi    | Marks<br>ion 20 Marks (1 Hr.)<br>uding Regularity 05 Marks                                     |        |
| 1.         | Recommended:<br>Programming in ANCI<br>Numerical Analysis: J.<br>Introduction to Numer |                         |                                                                                                |        |

| Program: Bachelor's Degree with<br>Honours/Hons. with Research              | Year: Fourth         | Semester: VII                    |
|-----------------------------------------------------------------------------|----------------------|----------------------------------|
| Class: UG                                                                   |                      |                                  |
| Subject: Mathematics<br>Course Code: MJ-16                                  | Course Title: Fl     | uid Mechanics & Special Function |
| Course Learning Outcomes: This course<br>a) understand the nature of fluid, | its pressure and cen | cic of presserver                |

- b) explain the fluid motion using equation of continuity and continuity and singular points.c) find series solution of differential equations about ordinary and singular points.
- d) understand the properties of Legendre polynomials and properties of Hypergeometric functions.

| Credit: 4 | 4 (Theory)                                                                                                                                                             | Compulsory                                                                                                                                                                                                                                       |       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Full Ma   |                                                                                                                                                                        | Time: 3 Hours                                                                                                                                                                                                                                    | Hours |
|           |                                                                                                                                                                        | Content                                                                                                                                                                                                                                          | Hours |
| Jnit<br>I | Equilibrium of fluids under                                                                                                                                            | Fluid pressure, pressure of heavy liquids.<br>given system of forces. Centre of pressure.                                                                                                                                                        | 15 h  |
| п         | Thrust on plane and curved surfaces. Lagarangian and Eulerian<br>methods, Equation of continuity. Euler's equation of motion for perfect<br>fluid Bernoulli's Theorem. |                                                                                                                                                                                                                                                  |       |
| 111       | Methods and forms of<br>method).<br>[N.B. result of analysis re<br>taken for granted]<br>Bessel's equation: Soluti<br>function for J <sub>n</sub> (x), equation        | y point, singular point (regular), General<br>series solution (Indicial equation-frobenius<br>egarding validity of series. Solution are to be<br>ion Recurrence formula for J_(x); generating<br>ins reducible to Bessel equation, Orthogonality |       |
| IV        | polynomials, generating<br>polynomials. Hypergeon<br>representation, Summati                                                                                           | Solution, Rodrigue's formula, Legendre<br>function for P <sub>*</sub> (x), Orthogonality of Legendre<br>metric functions, special cases, Integral<br>ion theorem.                                                                                |       |
| Session   | al Internal Assessment (SIA)                                                                                                                                           | Full Marks 25 Marks<br>ritten Examination 20 Marks (1 Hr.)<br>erformance including Regularity 05 Marks                                                                                                                                           |       |

| Program: Bachelor's Degree with<br>Honours/Hons. with Research<br>Class: UG                                                                                                                                                                                                    | Year: Fourth                                                                            | Semester: VII                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|
| Subject: Mathematics                                                                                                                                                                                                                                                           |                                                                                         | P. Discusto Mathematics            |
| Course Code: MJ-17                                                                                                                                                                                                                                                             |                                                                                         | etric space & Discrete Mathematics |
| <ul> <li>Course Learning Outcomes: This course</li> <li>a) Develop the concept of metric</li> <li>b) Learn the idea of completence</li> <li>c) Learn the idea of continuous</li> <li>d) Learn the concept of cardinality</li> <li>e) understand the concept of grap</li> </ul> | c space and related<br>ss of a space with i<br>and uniform contin<br>& mathematical inc | ts properties.<br>nuous functions. |
| Credit: 4 (Theory)                                                                                                                                                                                                                                                             | Compulsory                                                                              |                                    |

| Credit:   | 4 (Theory)                                                                                                       | Compulsory                                                                                                                                                                                                                                        |       |
|-----------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|           | arks: 75                                                                                                         | Time: 3 Hours                                                                                                                                                                                                                                     | **    |
|           |                                                                                                                  | Content                                                                                                                                                                                                                                           | Hours |
| Init<br>I | alocura                                                                                                          | efinition and example of metric spaces, Open sets, Interior closed Sets                                                                                                                                                                           |       |
| п         | Convergence, completene<br>theorem. Continuous maps                                                              | vergence, completeness, Bair's theorem, Cantor's Intersection<br>rem. Continuous maps, Uniform Continuity, and related extensions.                                                                                                                |       |
| 111       | Sets and Propositions-Car<br>Inclusion and exclusion.<br>Equivalence Relations and<br>obains and Antichains, Pig | dinality. Mathematical Induction. Principle of<br>Relations and Functions – Binary Relations.<br>partitions. Partial. Order Relations and Lattices,<br>eon Hole Principle.                                                                        | 15 h  |
| IV        | Graphs and Planar Grap<br>Graphs. Paths and Circui<br>Travelling Salesman Problement                             | h, basic terminology. Multigraphs. Weighted<br>ts. Shortest paths. Eulerian Paths and Circuits.<br>lem. Planer Graphs. Boolean Algebras – Lattices<br>Duality. Distributive and complemented Lattices.<br>bras. Boolean Functions and Expression. | 15 h  |
|           | al Internal Assessment (SIA)<br>A. Internal wr<br>B. Over All Pe                                                 |                                                                                                                                                                                                                                                   |       |

Discrete Mathematics: C.L. Lieu, Elements of Discret International Ed.
 Topology: K.K. Jha / J.N. Sharma
 Mathematical Analysis: Shanti Narayan / Mallick Arora
 Metric Space by Lalji Prasad

| rogram.   | Bachelor's Degree with                                                                                                                                            | Year: Fourth                                               | Semester: VII                                          |       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-------|
| Iogram.   | Hons. with Research                                                                                                                                               |                                                            |                                                        |       |
| Class: UC |                                                                                                                                                                   |                                                            |                                                        |       |
|           | Mathematics                                                                                                                                                       |                                                            | 1 The section and                                      |       |
| a (       | 1. MIT 19                                                                                                                                                         | Course Title: In                                           | tegral Transform                                       |       |
|           | ming Outcomes. This course                                                                                                                                        | will enable the stude                                      | ents to:                                               |       |
| 2) lea    | in concept of Laplace and inv                                                                                                                                     | erse Laplace transic                                       | /////:                                                 |       |
| b) sol    | ve the differential equation u                                                                                                                                    | ising Laplace transfo                                      | irm.                                                   |       |
| c) lea    | arn the concept and propertie                                                                                                                                     | s of Fourier transfor                                      | m.                                                     |       |
| d) lea    | arn application of Fourier sine                                                                                                                                   | & cosine transform                                         |                                                        |       |
| Credit: 4 | (Theory)                                                                                                                                                          | Compulsory                                                 |                                                        |       |
| Full Mar  | rks: 75                                                                                                                                                           | Time: 3 Hours                                              |                                                        | TT    |
| Unit      |                                                                                                                                                                   | Content                                                    |                                                        | Hours |
| I         | Laplace transform: Def, transformation of elementary functions, properties,<br>inverse transform, transform derivatives and integrals, multiplication by $t^n$ 15 |                                                            |                                                        |       |
| II        | division by t.<br>Inverse Laplace Transform, Convolution theorem and application to<br>differential equation.                                                     |                                                            |                                                        |       |
| ш         | Infinite Fourier Transform: Infinite Fourier sine transform, Infinite Fourier<br>cosine transform, Relation between Fourier & Laplace transform.                  |                                                            |                                                        |       |
| IV        | The Finite Fourier Transform & Integral: Finite Fourier sine transform,<br>Finite Fourier cosine transform, Fourier Integral.15                                   |                                                            |                                                        |       |
| Sessiona  | Al Internal Assessment (SIA)<br>A. Internal w<br>B. Over All P                                                                                                    | Full Marks 25 M<br>ritten Examination<br>erformance includ | arks<br>1–20 Marks (1 Hr.)<br>ing Regularity –05 Marks |       |

|                           | the test the second the                                                                                                                    | Year: Fourth                                                                  | Semester: VII                                                   |          |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|
| Program: ]                | Bachelor's Degree with                                                                                                                     | real. Fourth                                                                  |                                                                 |          |
|                           | Hons. with Research                                                                                                                        |                                                                               |                                                                 |          |
| Class: UG                 |                                                                                                                                            |                                                                               |                                                                 |          |
| Subject: N                | Mathematics                                                                                                                                | Course Title Pe                                                               | artial Differentiation                                          |          |
|                           | ode: MJ-19                                                                                                                                 | ill anable the stud                                                           | lents to:                                                       |          |
| a) app<br>b) app<br>c) mo | rning Outcomes: This course of<br>oly a range of techniques to so<br>oly Monge's method to solve<br>del physical phenomena usi<br>nations. | ive first & second c                                                          |                                                                 | and wave |
| Credit: 4                 | (Theory)                                                                                                                                   | Compulsory                                                                    |                                                                 |          |
| Full Mar                  |                                                                                                                                            | Time: 3 Hours                                                                 |                                                                 | 11       |
|                           | I                                                                                                                                          | Content                                                                       |                                                                 | Hours    |
| Unit<br>I                 | method.                                                                                                                                    | Partial differential equation, formation, linear p.d.e. of order 1-Lagrange's |                                                                 |          |
| II                        | Non-linear equation of o<br>Method. Homogeneous lin<br>C.F. and P.I.                                                                       | order 1, four for<br>mear equation with                                       | rms Charpits method, Jacobi<br>n constant co-efficient Rules of | 15 h     |
| III                       |                                                                                                                                            | Non-linear equations of second order, Monge's method.                         |                                                                 |          |
| IV                        | Boundary Value Problem: Derivation and solution of one-dimensional wave equation and one-dimensional heat equation.                        |                                                                               |                                                                 | 15 h     |
|                           | B Over All P                                                                                                                               | Full Marks - 25 N<br>ritten Examinatio<br>Performance incluo                  | larks<br>n . 20 Marks (1 Hr.)<br>ding Regularity . 05 Marks     |          |
| -                         | Recommended:<br>Advanced Differential Equ<br>Differential equation: J.N.                                                                   | ation: M.D. Raisi<br>Sharma                                                   | ngania                                                          |          |

| Program:<br>Honours/<br>Class: UC | Bachelor's Degree with<br>Hons. with Research                                                                                                                              | Year: Fourth                                               | Semester: VIII                                                                                                                                                  |         |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Subject: I                        | Mathematics                                                                                                                                                                | Titler I                                                   | inear Algebra & Linear Dif                                                                                                                                      | ference |
| Course C                          | ode: MJ-20                                                                                                                                                                 | equation                                                   |                                                                                                                                                                 |         |
| a) uno<br>b) uno                  | rning Outcomes: This course w<br>derstand concept of basis of ve<br>derstand the concept of rank &<br>nstruct difference equations an<br>d solution of linear difference e | nullity.                                                   |                                                                                                                                                                 |         |
| Q ditte                           | (Theory)                                                                                                                                                                   | Compulsory                                                 |                                                                                                                                                                 |         |
| Full Mar                          | t (Theory)                                                                                                                                                                 | Time: 3 Hours                                              | 3                                                                                                                                                               | TTarra  |
| Unit                              |                                                                                                                                                                            | Content                                                    |                                                                                                                                                                 | Hours   |
| I                                 | and basis of a finite dimensional complements matrices<br>I. S., properties of inner<br>orthogonal basis and Gran                                                          | and change of bas<br>product, Schwart<br>n-schmidt constr  | inear dependence, dimension<br>, Quotient space, Direct sums<br>is. Inner product & norm in a<br>z inequality, orthogonal set,<br>uction for finite dimensional | 15 h    |
| II                                | transformations, Dual spa<br>transformation, similar ma<br>(Algebraic geometric and t                                                                                      | trices, even matri-<br>multiplicity).                      | of nullity, algebra of linear<br>duality. Matrices and linear<br>ces, diagonalisation Eigen root                                                                | 15 h    |
| ш                                 | Uniquencess theorem, solu                                                                                                                                                  | ution of the form.                                         | ference Equation, Existence &<br>$y_{n+1} = Ay_n + C$                                                                                                           | 15 h    |
| IV                                | Linear Difference Equation with constant coefficient: Basic Definition.<br>Combination of solution, Fundamental set of solution, Homogeneous<br>15                         |                                                            |                                                                                                                                                                 | 151     |
| Session                           | al Internal Assessment (SIA)<br>A . Internal w<br>B . Over All P                                                                                                           | Full Marks 25 M<br>ritten Examination<br>erformance includ | arks<br>n 20 Marks (1 Hr.)<br>ling Regularity 05 Marks                                                                                                          |         |
| Book<br>1.<br>2.                  | <b>s Recommended:</b><br>Modern Algebra: Surjeet S<br>Linear Difference Equation                                                                                           | Sach & Quazi Za                                            | meeruddin                                                                                                                                                       |         |

|           | n: Bachelor's Degree with<br>rs/Hons. with Research<br>UG                                                                                                                                                                     | Year: Fourth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Semester: VIII                |          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|
| Subject   | : Mathematics                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |          |
| Course    | Code: AMJ-1                                                                                                                                                                                                                   | Course Title: To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pology                        |          |
| Course Le | earning Outcomes: This course wi                                                                                                                                                                                              | ill enable the studer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | its to:                       |          |
| a) le     | earn about the concept of compa                                                                                                                                                                                               | ctness in metric spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce.                           |          |
| b) d      | efine topological space its bases                                                                                                                                                                                             | and different types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | spaces.                       |          |
| c) le     | earn different types of compactne                                                                                                                                                                                             | ess in topological sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aces.                         |          |
| te        | earn different types separation as<br>opological spaces                                                                                                                                                                       | kioms in topological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | spaces and also the connected | lness of |
|           | 4 (Theory)                                                                                                                                                                                                                    | Compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |          |
| Full Ma   | arks: 75                                                                                                                                                                                                                      | Time: 3 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |          |
| Jnit      | Content                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours                         |          |
| Ι         | Compactness in metric space, Ascoli's theorem. Topological spaces:                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 h                          |          |
| п         | Definition, examples, base, sub-base, first axiom space, second axiom space, comparison of topologies.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 15 h     |
| III       | Compactness: Compact space, Lindeloff space, product space, Tychonoff's theorem, locally compactness.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |          |
| IV        | Separation: T <sub>1</sub> – space, T <sub>2</sub> – space, normal & completely regular space, Uryshon's<br>lemma, Tietze extension theorem, Uryshon's metrization theorem.<br>Connectedness: connectedness & its properties. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |          |
| Sessional |                                                                                                                                                                                                                               | n Examination . 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |          |
| Books     | <b>Recommended:</b><br>Real Analysis: H. L. Royden, P                                                                                                                                                                         | M. Fitzpatrick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |
| 1. R      | Cal Analysis. II. L. Roydell, F                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |          |
|           | opology: J. N. Sharma, J. P. C                                                                                                                                                                                                | ALC: NOT THE REAL PROPERTY OF |                               |          |

| Hono<br>Class | ram: Bachelor's Degree with<br>ours/Hons. with Research<br>:: UG                                       | Year: Fourth                             | Semester: VIII                                               |       |
|---------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|-------|
| Subje         | ect: Mathematics                                                                                       |                                          |                                                              |       |
|               | se Code: AMJ-2                                                                                         | Course Title: Co                         | mplex Analysis II                                            |       |
| Course        | Learning Outcomes: This course wil                                                                     | enable the studen                        | ts to:                                                       |       |
| a)            | apply complex integration in solvin                                                                    | ig problems.                             | 13 10.                                                       |       |
| b)            | learn about power series expansion                                                                     | n and their converg                      | 8 <b>0</b> 00                                                |       |
| c)            | apply method of contour integration                                                                    | on.                                      | ence.                                                        |       |
| d)            | learn about conformal mapping.                                                                         |                                          |                                                              |       |
| Credit        | t: 4 (Theory)                                                                                          | Compulsory                               |                                                              |       |
|               | Aarks: 75                                                                                              | Time: 3 Hours                            |                                                              |       |
| Unit          |                                                                                                        | Content                                  |                                                              | Hours |
| I             | Integral: Cauchy's integral the<br>theorem, Liouvillies theorem<br>Rouche's theorem, fundament         | n, lavlor's theo                         | rem [aurent's thoorem]                                       | 15 h  |
| II            | Power series: formula for radi<br>& uniform convergence theor<br>power series, term by term inte       | em of power serie<br>egration and differ | es, uniqueness theorem of<br>entiation theorem.              | 15 h  |
| III           | Residue & poles, contour integ                                                                         |                                          |                                                              | 15 h  |
| IV            | Conformal mapping: Conformal<br>condition for conformal mapping<br>from unit circle to unit circle and | g, mapping from h                        | ping, necessary & sufficient<br>alf plane to circle, mapping | 15 h  |
|               | al Internal Assessment (SIA) Full (<br>A Internal written<br>B Over All Perform                        | Examination 201                          | Marks (1 Hr.)<br>egularity - 05 Marks                        |       |
|               | Recommended:                                                                                           |                                          | gaming too marks                                             |       |
| 1. (          | Complex Variable: Churchill                                                                            |                                          |                                                              |       |
| 2.            | Theory of Functions: Titch Marsh                                                                       | 1                                        |                                                              |       |
| 3. (          | Complex Analysis: J. B. Conway                                                                         |                                          |                                                              |       |
| 4. J          | Function of a Complex Variable:                                                                        | Goyal & Gupta                            |                                                              |       |

| rogram:                                              | Bachelor's Degree with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Year: Fourth                                                                                                                                                                                                                                                                                                                                                                                                         | Semester: VIII                                                                                                                                                                                                                                                                                                                                                                     |              |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Honours                                              | Hons. with Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| Class: U                                             | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| Subject:                                             | Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                    | Landa & Moosure Theor                                                                                                                                                                                                                                                                                                                                                              | v            |  |
| Course (                                             | Code: AMJ-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course l'itle: Rea                                                                                                                                                                                                                                                                                                                                                                                                   | al Analysis & Measure Theor                                                                                                                                                                                                                                                                                                                                                        | 3            |  |
| ourse Lea                                            | arning Outcomes: This course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | will enable the stude                                                                                                                                                                                                                                                                                                                                                                                                | nts to.                                                                                                                                                                                                                                                                                                                                                                            |              |  |
| a) lea                                               | arning Outcomes: This course<br>arn the concept of uniform co                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nvergence in sequen                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| b) lea                                               | arn about Fourier series and it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s applications.                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| c) le                                                | arn the concept of measure th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | neory and its properti                                                                                                                                                                                                                                                                                                                                                                                               | les.                                                                                                                                                                                                                                                                                                                                                                               |              |  |
| d) kr                                                | now about the measurable fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nctions & its propertie                                                                                                                                                                                                                                                                                                                                                                                              | es.                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| Custite                                              | 4 (Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compulsory                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| Full Ma                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time: 3 Hours                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                  |              |  |
|                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Content                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                    | Hours        |  |
| Jnit                                                 | Company and series of fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | unction: Uniform c                                                                                                                                                                                                                                                                                                                                                                                                   | onvergence of sequence and                                                                                                                                                                                                                                                                                                                                                         |              |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relay? a general nrin(                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| I                                                    | i i Citha anno of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a ceries of HINCL                                                                                                                                                                                                                                                                                                                                                                                                    | In weicstrass 5 in toot is                                                                                                                                                                                                                                                                                                                                                         | 15 h         |  |
| 1                                                    | series of real function. Cauchy's general principle of anisotras's M-test for<br>continuity of the sum of a series of function. Weiestrass's M-test for<br>uniform convergence. Term by term integration and differentiation.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
|                                                      | Fourier series: Fourier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | series expansion o                                                                                                                                                                                                                                                                                                                                                                                                   | of a function relative to an                                                                                                                                                                                                                                                                                                                                                       |              |  |
|                                                      | I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | accal c ineduality                                                                                                                                                                                                                                                                                                                                                                                                   | of a function relative to an<br>pointwise convergence of                                                                                                                                                                                                                                                                                                                           | 15 6         |  |
| п                                                    | orthonormal system. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | essel's inequality,                                                                                                                                                                                                                                                                                                                                                                                                  | ntegral, Perseval's theorem,                                                                                                                                                                                                                                                                                                                                                       | 15 h         |  |
| п                                                    | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-1 ebesgue theor                                                                                                                                                                                                                                                                                                                                                                                                                                   | eries, Dirichlet's i<br>eries, Problems on f                                                                                                                                                                                                                                                                                                                                                                         | ntegral, Perseval's theorem,                                                                                                                                                                                                                                                                                                                                                       | 15 h         |  |
| п                                                    | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor                                                                                                                                                                                                                                                                                                                                                                                                                                    | eries, Dirichlet's i<br>erion, Problems on f<br>eriodic functions.                                                                                                                                                                                                                                                                                                                                                   | ntegral, Perseval's theorem,<br>finding trigonometric Fourier                                                                                                                                                                                                                                                                                                                      | 15 h         |  |
| II                                                   | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p                                                                                                                                                                                                                                                                                                                                                                                                      | eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.                                                                                                                                                                                                                                                                                                                                                     | ntegral, Perseval's theorem,<br>finding trigonometric Fourier                                                                                                                                                                                                                                                                                                                      |              |  |
|                                                      | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer theory                                                                                                                                                                                                                                                                                                                                                                      | eries, Dirichlet's i<br>rem, Problems on t<br>eriodic functions.<br>measure, measurab                                                                                                                                                                                                                                                                                                                                | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental                                                                                                                                                                                                                                                      |              |  |
| п                                                    | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer theory                                                                                                                                                                                                                                                                                                                                                                      | eries, Dirichlet's i<br>rem, Problems on t<br>eriodic functions.<br>measure, measurab                                                                                                                                                                                                                                                                                                                                | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental                                                                                                                                                                                                                                                      | 15 h<br>15 h |  |
|                                                      | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer theorems and examples of                                                                                                                                                                                                                                                                                                                                                    | ersel's inequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>properties of measu<br>of uncountable sets of                                                                                                                                                                                                                                                        | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.                                                                                                                                                                                                                                  | 15 h         |  |
|                                                      | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer<br>approach, arithmetical p<br>theorems and examples of<br>Measurable Functions: Close                                                                                                                                                                                                                                                                                     | ersel's inequality,<br>eries, Dirichlet's i<br>rem, Problems on t<br>eriodic functions.<br>measure, measurab<br>properties of measu<br>of uncountable sets of<br>sure of class of measu                                                                                                                                                                                                                              | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.                                                                                                                                                                                                                                  | 15 h         |  |
| III                                                  | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer n<br>approach, arithmetical p<br>theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl                                                                                                                                                                                                                                                    | ersel's inequality,<br>eries, Dirichlet's i<br>rem, Problems on t<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi                                                                                                                                                                                                      | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>Irrable function under all algebraic<br>ple trigonometric Fourier series<br>n bounded over a set of finite                                                                                                                    | 15 h         |  |
|                                                      | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of pe<br>Measure theory: Outer theorems and examples of<br>theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi                                                                                                                                                                                                                           | essel's mequanty,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio                                                                                                                                                                                | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In able function under all algebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical                                                                               | 15 h         |  |
| III                                                  | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of pe<br>Measure theory: Outer theorems and examples of<br>theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi                                                                                                                                                                                                                           | essel's mequanty,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio                                                                                                                                                                                | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In able function under all algebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical                                                                               | 15 h         |  |
| III<br>IV                                            | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of pe<br>Measure theory: Outer theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of me<br>properties, comparison with                                                                                                                                                                                            | essel's inequality,<br>eries, Dirichlet's i<br>rem, Problems on t<br>eriodic functions.<br>measure, measurab<br>or operties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesgy<br>th R-integral, bounde<br><b>D Full Marks 25 Ma</b>                                                                                              | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In able function under all algebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.                                                    | 15 h         |  |
| III<br>IV                                            | orthonormal system. Be<br>trigonometric Fourier series representation of pro-<br>Measure theory: Outer theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of me<br>properties, comparison with<br>al Internal Assessment (SIA                                                                                                                                                                                            | essel's mequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>properties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma                                                                                                        | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>urable function under all algebraic<br>ple trigonometric Fourier series<br>n bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)                          | 15 h         |  |
| III<br>IV                                            | orthonormal system. Be<br>trigonometric Fourier series representation of pro-<br>Measure theory: Outer theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of me<br>properties, comparison with<br>al Internal Assessment (SIA                                                                                                                                                                                            | essel's mequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>properties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma                                                                                                        | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In able function under all algebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.                                                    | 15 h         |  |
| III<br>IV<br>Session                                 | orthonormal system. Be<br>trigonometric Fourier set<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer n<br>approach, arithmetical p<br>theorems and examples of<br>Measurable Functions: Clos<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of m<br>properties, comparison wi<br>tal Internal Assessment (SIA<br>A Internal v<br>B Over All Internal v                                                                                       | essel's mequanty,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measurab<br>of uncountable sets of<br>sure of class of measurab<br>ewood's third princi<br>c functions. Function<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma<br>vritten Examination<br>Performance includi                                                    | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In bounded over a la lagebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)<br>ing Regularity . 05 Marks | 15 h         |  |
| III<br>IV<br>Session<br>Book                         | orthonormal system. Be<br>trigonometric Fourier series representation of pro-<br>Measure theory: Outer theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of measure, comparison with<br>the Internal Assessment (SIA<br>A Internal v<br>B Over All Internal v<br>Principle of Mathematical                                                                                                                              | essel's mequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>properties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounded<br>) Full Marks 25 Ma<br>vritten Examination<br>Performance includi<br>Analysis: Walter R                                   | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In bounded over a la lagebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)<br>ing Regularity . 05 Marks | 15 h         |  |
| III<br>IV<br>Session<br>Book<br>1.<br>2              | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer r<br>approach, arithmetical p<br>theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of m<br>properties, comparison wi<br>B Over All I<br>s Recommended:<br>Principle of Mathematical<br>Mathematical Analysis: SI                                                                    | essel's mequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma<br>vritten Examination<br>Performance includi<br>Analysis: Walter R<br>nanti Narayan                   | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In bounded over a la lagebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)<br>ing Regularity . 05 Marks | 15 h         |  |
| III<br>IV<br>Session<br>Book<br>1.<br>2.<br>3        | orthonormal system. Be<br>trigonometric Fourier series<br>Riemann-Lebesgue theor<br>series representation of pr<br>Measure theory: Outer theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of me<br>properties, comparison with<br>al Internal Assessment (SIA<br>A Internal v<br>B Over All Internal v<br>B Over All Internal v<br>B Cover All International<br>Mathematical Analysis: SI<br>Real Analysis: H. L. Royd | essel's mequality,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma<br>vritten Examination<br>Performance includi<br>Analysis: Walter R<br>hanti Narayan<br>len            | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In bounded over a la lagebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)<br>ing Regularity . 05 Marks | 15 h         |  |
| III<br>IV<br>Session<br>Book<br>1.<br>2.<br>3.<br>4. | orthonormal system. Be<br>trigonometric Fourier se<br>Riemann-Lebesgue theor<br>series representation of p<br>Measure theory: Outer r<br>approach, arithmetical p<br>theorems and examples of<br>Measurable Functions: Close<br>and limit operations, Littl<br>representation of periodi<br>measure, condition of m<br>properties, comparison wi<br>B Over All I<br>s Recommended:<br>Principle of Mathematical<br>Mathematical Analysis: SI                                                                    | essel's mequanty,<br>eries, Dirichlet's i<br>rem, Problems on f<br>eriodic functions.<br>measure, measurab<br>oroperties of measu<br>of uncountable sets of<br>sure of class of measu<br>ewood's third princi<br>c functions. Functio<br>easurability, Lebesg<br>th R-integral, bounde<br>) Full Marks 25 Ma<br>vritten Examination<br>Performance includi<br>Analysis: Walter R<br>nanti Narayan<br>en<br>K. K. Jha | ntegral, Perseval's theorem,<br>finding trigonometric Fourier<br>le sets through Caratheodory<br>urable sets, two fundamental<br>of zero measure.<br>In bounded over a la lagebraic<br>ple trigonometric Fourier series<br>in bounded over a set of finite<br>ue integral and its arithmetical<br>ed convergence theorem.<br>arks<br>20 Marks (1 Hr.)<br>ing Regularity . 05 Marks | 15 h         |  |

| Semester | Paper    | Code  | Course Title            | Credit |
|----------|----------|-------|-------------------------|--------|
| I        | Minor-1A | MN-1A | Calculus                | 4      |
| 11       | Minor-2A | MN-2A | Discrete Mathematics    | 4      |
| ш        | Minor-1B | MN-1B | Real Analysis           | 4      |
| IV       | Minor-2B | MN-2B | Discrete Mathematics-II | 4      |
| V        | Minor-1C | MN-1C | Vectors                 | 4      |
| VI       | Minor-2C | MN-2C | Probability Theory      | 4      |
| VII      | Minor-1D | MN-1D | Real Analysis-II        | 4      |
| VIII     | Minor-2D | MN-2D | Operations Research     | 4      |

#### Minor Syllabus

|                  |                                                                            | Year: First                      | Semester: I                                                                             |            |  |  |
|------------------|----------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|------------|--|--|
| Program: C       | ertificate                                                                 | real. First                      |                                                                                         |            |  |  |
| Class: UG        | lathematics                                                                | • • • •                          |                                                                                         |            |  |  |
| C Ca             | do: MIN 1A                                                                 | Course Title: Calculu            | IS                                                                                      |            |  |  |
|                  |                                                                            |                                  | ill onable the students to:                                                             | to colve   |  |  |
| a) Un            | derstand the                                                               | concept of functions,            | limits, and continuity, and apply them                                                  | to solve   |  |  |
| ma               | thematical pro                                                             | oblems.                          | i used moon value theorem, to diff                                                      | erentiate  |  |  |
| b) Us            | e differentiatio                                                           | on rules, including the cr       | nain rule and mean value theorem, to diff<br>ive differentiation and Leibnitz's theorem | to solve   |  |  |
|                  |                                                                            |                                  |                                                                                         |            |  |  |
|                  | Iculus problem                                                             |                                  | omputing definite integrals using Riemann                                               | sums and   |  |  |
| c) De            | velop skills ill                                                           | I theorem of calculus, an        | d using various integration techniques to s                                             | olve real- |  |  |
|                  |                                                                            |                                  |                                                                                         |            |  |  |
|                  | · · ··································                                     | in integrating various t         | ypes of functions, analyzing curves, and c                                              | alculating |  |  |
| ar               | ea and volume                                                              | e of surfaces of revolution      | n using integration techniques.                                                         |            |  |  |
|                  | (Theory)                                                                   | Compulsory                       |                                                                                         |            |  |  |
| Full Mar         | ks: 75                                                                     | Time: 3 Hours                    | ontent                                                                                  | Hours      |  |  |
| Unit             |                                                                            |                                  | of functions and their properties,                                                      | 12 h       |  |  |
| I                | Functions a                                                                | and Limits: Definition           | erties, Continuity of functions.                                                        | 12 h       |  |  |
|                  | Limits of fur                                                              | Ictions and their prope          | bility of a real valued function,                                                       |            |  |  |
|                  | Differentia                                                                | I calculus: Differentiat         | erentiability, Rules of differentiation,                                                |            |  |  |
| п                | Geometrica                                                                 | I interpretation of unit         | a value theorem and its applications.                                                   | 18 h       |  |  |
| 11               | II Chain rule of differentiation, Mean value theorem and its applications, |                                  |                                                                                         |            |  |  |
|                  | Successive                                                                 | differentiation, Leibnit         | z's theorem.                                                                            |            |  |  |
|                  | Integration                                                                | n: Antiderivatives, Inde         | efinite and definite integrals, Riemann                                                 | 12 h       |  |  |
| III              | cume and                                                                   | the definite integral,           | , Fundamental theorem of calculas,                                                      |            |  |  |
|                  | Properties                                                                 | of definite integrals, In        | tegration rectiniques.                                                                  |            |  |  |
|                  | Integral (                                                                 | Calculus: Integration            | of rational and irrational functions,                                                   | 101        |  |  |
| IV               | Reduction                                                                  | formula, Computing of            | definite integral, Curve tracing, Length<br>nd triple integrals, Area and Volume of     | 18 h       |  |  |
| 1 4              | of curve, C                                                                | computing of double al           | na triple integrais, Area and Tan                                                       |            |  |  |
|                  | surface of                                                                 | revolution.                      | ient (SIA) Full Marks – 25 Marks                                                        |            |  |  |
|                  |                                                                            | Internal written E               | $x_{a}$ mination - 20 Marks (1 m)                                                       |            |  |  |
|                  | F                                                                          | 3 – Over All Performa            | ance including Regularity – 05 Marks                                                    |            |  |  |
| Books            | Desemand                                                                   | lad:                             |                                                                                         |            |  |  |
|                  | 1: /201                                                                    | 10) Calculus 1st Edition         | n, Pragati Prakashan, Meerut, India.                                                    | 1. P.      |  |  |
| 2 404            | ard Anton 1                                                                | <b>Bivens &amp; Stephan Davi</b> | is (2016). Calculus (10th edition). Whey                                                | India.     |  |  |
|                  | 1 1 1/1                                                                    | ~ (1006) Achects of (2           | alculus, Springer-veriag.                                                               |            |  |  |
|                  | 1 1/2011/001                                                               | wicz & Bindhyachal Kal           | (2003). Calculus with Maple Labor Har                                                   | sa.        |  |  |
| CT NORT CRAMMANN |                                                                            | OIC) Differential (alc)          | inic right phillon. Fullishard for each                                                 |            |  |  |
| 6 Geo            | orge B. Thom                                                               | nas Jr., Joel Hass, Chri         | stopher Heil & Maurice D. Weir (201)                                                    | 3). Inomas |  |  |
| Calcul           | us (14th editi                                                             | ion). Pearson Education          | n.                                                                                      |            |  |  |
|                  |                                                                            |                                  |                                                                                         |            |  |  |

| Class: U         |                                                          | Year: First                                                                                                       | Semester: II                                                                                                                                     |       |
|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Subject:         | Mathematics                                              |                                                                                                                   |                                                                                                                                                  |       |
| Course (         | Code: MN-2A                                              | Course Title: Discret                                                                                             | e Mathematics                                                                                                                                    |       |
| a)               | Understand the c                                         | outcomes: This course wi<br>oncept equivalence relatio<br>concept of bounds in POSE<br>thematical logic and logic | If enable the students to:<br>on & partial order relation.<br>If and able to understand the concept of Latt<br>cal operations to various fields. | ice.  |
| Credit:          | 4 (Theory)                                               | Compulsory                                                                                                        |                                                                                                                                                  |       |
| Full Ma          |                                                          | Time: 3 Hours                                                                                                     |                                                                                                                                                  | Hours |
| Unit             |                                                          | Con                                                                                                               | tent                                                                                                                                             | nours |
| I                | Partition, Equi                                          | ivalence relation, Con<br>amental theorem.                                                                        | ntisymmetric & transitive relation,<br>gruence Modulo Relation, Induced                                                                          | 15 h  |
| п                | Partial Order<br>maximal & m                             | <b>Relation:</b> Partial Orc<br>inimal element. Defini                                                            | ler Set, <i>l.u.b.</i> & <i>g.l.b, inf., sup.,</i><br>ition & examples of Lattice, Zorn's                                                        | 15 h  |
| ш                | disjunction. I positive and in                           | Implications, biconditi<br>nverse propositions, an                                                                | ruth table, negation, conjunction and<br>onal propositions, converse, contra<br>d precedence of logical operators.                               | 15 h  |
| IV               | <b>Propositiona</b><br>quantifiers: In<br>Validity of ar | <b>l equivalence:</b> Logi<br>ntroduction, Quantifier<br>gument by different mo                                   | cal equivalences. Predicates and<br>s, Binding variables and Negations.<br>ethods.                                                               | 15 h  |
| Session          | al Internal Asses                                        | ssment (SIA) Full Mark                                                                                            | as 25 Marks<br>mination 20 Marks (1 Hr)<br>e including Regularity 05 Marks                                                                       |       |
| 1. Se<br>2. R. I | crete Mathema                                            | K. Jha,<br>ete Mathematics and Cor<br>atics by M. K. Gupta; K                                                     | nbinatorial Mathematics, Pearson Educat<br>rishna Prakashan.<br>on & Patil; Schaum's Outlines                                                    | ion,  |

| Spram:       Diploma       Year:       Second         bject:       Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | and the second                                                             |                                               | Semester: III                        |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------|
| ass: UG       bject: Mathematics         bytest: Mathematics       Course Title: Real Analysis         course Learning Outcomes: This course will enable the students to: <ul> <li>a) Understand many properties of the real line R and learn to define sequence in terms of functions from R to a subset of %.</li> <li>b) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculat their limit superior, limit inferior, and the limit of a bounded sequence.</li> <li>c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.</li> <li>d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.</li> </ul> <li>Credit: 4 (Theory) Compulsory         <ul> <li>Full Marks: 75</li> <li>Time: 3 Hours</li> <li>Hull Marks: 75</li> <li>Time: 3 Hours</li> <li>Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R.</li> </ul> </li> <li>Sequences of Real Numbers:         <ul> <li>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit theorem, Subsequences, Bolzano sequences, Limit superior and limit inferior of a sequence of real numbers. Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> </ul> </li> <li>Infinite Series         <ul> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's condensatin Test, De Morgan &amp; Bertrand's test.</li></ul></li>                                                                                                                                                                                                                                                                                                                  | oram: Dir   | ploma                                                                      | Year: Second                                  | Semesteri                            |           |
| <ul> <li>Initial Real Number System         <ul> <li>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum, Axioms in R, Absolute value of R.</li> <li>Initial Real Numbers:</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ass: UG     |                                                                            |                                               |                                      |           |
| Code: MN-1B   Course Triberouse will enable the students to:         Course Learning Outcomes: This course will enable the students to:         a) Understand many properties of the real line R and learn to define sequence in terms of functions from R to a subset of R.         b) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calcule their limit superior, limit inferior, and the limit of a bounded sequence.         c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.         d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.         Compulsory         Full Marks: 75         Time: 3 Hours         Mounds of a sets, Supremum Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of a sequence, Bounded sequence, Limit and infimum of a nonempty subset of R. The completeness property of R. Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R       15         Sequences of Real Numbers:         Convergent sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit is uperior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence riterion. Completeness property of set of real number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | biect: Ma   | thematics                                                                  | Deal Analysis                                 |                                      |           |
| Course Learning Outcomes: The toolse the real line R and learn to define sequence in terms functions from R to a subset of R.         a) Understand many properties of the real line R and learn to define sequences and to calculat their limit superior, limit inferior, and the limit of a bounded sequence.         c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.         d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.         Credit: 4 (Theory)       Compulsory         Full Marks: 75       Time: 3 Hours         Vinit       Real Number System         Axioms in R, Absolute value of a real number: Bounds of a sets, Supremum Axioms in R, Absolute value of a real number: Bounds of a sets, Supremum Axioms in R, Open, closed and perfect sets in R       15         a opint in R, Open, closed and perfect sets in R       Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy is first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.       15         III       Infinite Series       Convergence of positive term series; Basic comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test.       15         III       Alternating series: Alternating series, Leibniz test, Absolute and conditional conve                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1         | A MANIK                                                                    | Course Title: Real Allarysis                  | the students to:                     |           |
| <ul> <li>a) Understand many properties of R.</li> <li>b) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculat their limit superior, limit inferior, and the limit of a bounded sequence.</li> <li>c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.</li> <li>d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.</li> <li>Credit: 4 (Theory) Compulsory</li> <li>Full Marks: 75 Time: 3 Hours</li> <li>Full Marks: 75 Time: 3 Hours</li> <li>Hou finitim of a nonempty subset of R., The completeness property of R., and infimum of a nonempty subset of R., The completeness property of R., archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R.</li> <li>Sequences of Real Numbers:<br/>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers. Cauchy is first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series</li> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Cauchy is condensation Test, De Morgan &amp; Bertrand's test.</li> <li>Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 | Course I    | Learning (                                                                 | Outcomes: This course will enable             | and learn to define sequence in t    | erms of   |
| <ul> <li>functions from R to a subset of A.</li> <li>b) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.</li> <li>c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.</li> <li>d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.</li> <li>Credit: 4 (Theory) Compulsory</li> <li>Full Marks: 75 Time: 3 Hours</li> <li>Unit Real Number System <ul> <li>Axioms in R. Absolute value of a real number; Bounds of a sets, Supremum</li> <li>Axioms in R. Absolute value of R. The completeness property of R., and infimum of a nonempty subset of R. The completeness property of R., and infimum of a nonempty subset of R. The completeness property of R.</li> <li>I and infimum of a nonempty subset of R. The completeness property of R., archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R</li> <li>Sequences of Real Numbers:</li> <li>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence eriterion. Completeness property of set of real number.</li> <li>Infinite Series</li> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence, Necessary cond</li></ul></li></ul> | N T L       | Janatand m2                                                                |                                               |                                      | 1 Jato    |
| <ul> <li>c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.</li> <li>d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.</li> <li>Credit: 4 (Theory) Compulsory Full Marks: 75 Time: 3 Hours Full Marks: 75 Time: 3 Hours I Real Number System Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R Sequences of Real Numbers: Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>II Infinite Series Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fu          | inctions from                                                              | n R to a subset of R.                         | wand monotonic sequences and to c    | calculate |
| <ul> <li>c) Apply the ratio, root, alternating series and limit comparison tests for convergence a absolute convergence of an infinite series of real numbers.</li> <li>d) Learn some of the properties of Riemann integrable functions, and the applications of fundamental theorems of integration.</li> <li>Credit: 4 (Theory) Compulsory Full Marks: 75 Time: 3 Hours Full Marks: 75 Time: 3 Hours I Real Number System Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R Sequences of Real Numbers: Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>II Infinite Series Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) Re       | cognize bou                                                                | inded, convergent, divergent                  | f a bounded sequence.                |           |
| absolute convergence of all series of Riemann integrable functions, and the applications of fundamental theorems of integration.Credit: 4 (Theory)CompulsoryFull Marks: 75Time: 3 HoursUnitContentReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>and infimum of a nonempty subset of R, The completeness property of R,<br>Archimedean property, Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | th          | ieir limit sup                                                             | jerior, mine inte                             | mit comparison tests for converge    | ence and  |
| absolute convergence of all series of Riemann integrable functions, and the applications of fundamental theorems of integration.Credit: 4 (Theory)CompulsoryFull Marks: 75Time: 3 HoursUnitContentReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>and infimum of a nonempty subset of R, The completeness property of R,<br>Archimedean property, Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>eriterion. Completeness property of set of real number.15IIIInfinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy is ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.27IVAlternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) Ar       | pply the rat                                                               | tio, root, alternating series and in          | I numbers.                           |           |
| fundamental theorems of integrationCredit: 4 (Theory)CompulsoryFull Marks: 75Time: 3 HoursUnitContentInitReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>And infimum of a nonempty subset of R, The completeness property of R,<br>and infimum of a nonempty subset of R. The completeness property of R,<br>and infimum of a nonempty. Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>eriterion. Completeness property of set of real number.15IIIInfinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence:<br>Necessary condition for convergence, Cauchy criterion for convergence:<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a           | bsolute conv                                                               | vergence of an infinite series of rea         | the application                      | ns of the |
| fundamental theorems of integrationCredit: 4 (Theory)CompulsoryFull Marks: 75Time: 3 HoursUnitContentInitReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>And infimum of a nonempty subset of R, The completeness property of R,<br>and infimum of a nonempty subset of R. The completeness property of R,<br>and infimum of a nonempty. Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>eriterion. Completeness property of set of real number.15IIIInfinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence:<br>Necessary condition for convergence, Cauchy criterion for convergence:<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IN L        | oorn some (                                                                | of the properties of Riemann integ            | grable functions, and the appreciate |           |
| Credit: 4 (Theory)       Compulsory         Full Marks: 75       Time: 3 Hours       Hou         Unit       Content       Hou         I       Real Number System       Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum and infimum of a nonempty subset of R, The completeness property of R, and infimum of a nonempty subset of R. The completeness property of R, Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R       15         Sequences of Real Numbers:       Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy is equence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.       15         II       Infinite Series       Convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test.       2         IV       Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) Le       | fundamental                                                                | theorems of integration.                      |                                      |           |
| Great: 4 (1997)       Time: 3 Hours       Hou         Full Marks: 75       Time: 3 Hours       Content       Hou         Unit       Content       Content       Hou         I       Real Number System       Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum Axioms in R, Absolute value of R, The completeness property of R, and infimum of a nonempty subset of R, The completeness property of R, Archimedean property, Definition and types of intervals, Neighborhood of a point in R, Open, closed and perfect sets in R       15         I       Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Umit superior and limit inferior of a sequence of real numbers, Cauchy Sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.       15         III       Infinite Series<br>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's condensation Test, De Morgan & Bertrand's test.       2         IV       Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | undunit                                                                    |                                               |                                      |           |
| Full Marks: 75Time: 5 HoursFullUnitContentContentUnitReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>and infimum of a nonempty subset of R, The completeness property of R,<br>Archimedean property, Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15ISequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Credit: 4 ( | (Theory)                                                                   | Compulsory                                    |                                      |           |
| UnitContentIReal Number System<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>And infimum of a nonempty subset of R, The completeness property of R,<br>Archimedean property, Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15IISequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>eriterion. Completeness property of set of real number.15IIIInfinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Necessary condition for set, D'Alembert's ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Full Mark   | s: 75                                                                      | Time: 3 Hours                                 |                                      | Hours     |
| Real Number SystemAxioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>Axioms in R, Absolute value of a real number; Bounds of a sets, Supremum<br>and infimum of a nonempty subset of R, The completeness property of R,<br>Archimedean property, Definition and types of intervals, Neighborhood of<br>a point in R, Open, closed and perfect sets in R15Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>criterion. Completeness property of set of real number.15IIIInfinite Series<br>Convergence and divergence of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Cauchy's convergence of positive term series; Basic comparison test, Limit<br>comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series:<br>Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit        |                                                                            |                                               |                                      |           |
| <ul> <li>I and infimum of a nonempty subset of the vest of the</li></ul>               | T           | Real Numb                                                                  | per System                                    | er; Bounds of a sets, Supremum       |           |
| <ul> <li>Archimedean property, Definition and yrights in R</li> <li>a point in R, Open, closed and perfect sets in R</li> <li>Sequences of Real Numbers:<br/>Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone sequences, Weierstrass' theorem for-sequences, Monotone convergence theorem, Subsequences, Bolzano sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series<br/>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F           | Axioms in F                                                                | $\mathbb{R}$ , Absolute value of a real film. | he completeness property of K,       | 15 h      |
| <ul> <li>a point in R, Open, closed and performed a performed a point in R, Open, closed and performed a performed a performance of the performance of positive term performance of the performance of</li></ul>                |             |                                                                            |                                               |                                      |           |
| Sequences of Real Numbers:<br>Convergent sequence, Limit of a sequence, Bounded sequence, Limit<br>theorems, Monotone sequences, Weierstrass' theorem for-sequences,<br>Monotone convergence theorem, Subsequences, Bolzano sequences,<br>Limit superior and limit inferior of a sequence of real numbers, Cauchy<br>sequence, Cauchy's first theorem on limit, Cauchy's convergence<br>criterion. Completeness property of set of real number.15IIIInfinite Series<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Archimedean property, Derminer fect sets in R                              |                                               |                                      |           |
| <ul> <li>Convergent sequence, Limit of a sequences; theorem for-sequences, theorems, Monotone sequences, Weierstrass' theorem for-sequences, Monotone convergence theorem, Subsequences, Bolzano sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series         <ul> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Tests for convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> </ul> </li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                            |                                               |                                      |           |
| <ul> <li>II theorems, Monotone sequences, inclusion dependences, Bolzano sequences.</li> <li>II Monotone convergence theorem, Subsequences, Bolzano sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series         <ul> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy's convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Sequences                                                                  | of Real Numbers.                              | ice, Bounded sequence, Limit         |           |
| <ul> <li>II Monotone convergence theorem, observer a sequence of real numbers, Cauchy Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series         <ul> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy criterion test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Convergen                                                                  | Monotone sequences, Weierst                   | trass' theorem for-sequences,        | 15 h      |
| <ul> <li>Limit superior and limit interior of a sequence.</li> <li>Limit superior and limit interior of a sequence.</li> <li>sequence, Cauchy's first theorem on limit, Cauchy's convergence criterion. Completeness property of set of real number.</li> <li>Infinite Series</li> <li>Convergence and divergence of infinite series of positive real numbers, Necessary condition for convergence, Cauchy criterion for convergence; Necessary condition for convergence, Cauchy criterion for convergence; Cauchy criterion test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan &amp; Bertrand's test.</li> <li>IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | theorems,                                                                  | convergence theorem, Subse                    | equences, Bolzano sequences,         | 15 1      |
| sequence, Cauchy's first theorem on many<br>criterion. Completeness property of set of real number.Infinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Tests for convergence of positive term series; Basic comparison test, Limit<br>comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II          | Monotone                                                                   | erior and limit inferior of a sequ            | uence of real numbers, Cauchy        |           |
| Infinite SeriesConvergence and divergence of infinite series of positive real numbers,<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Necessary convergence of positive term series; Basic comparison test, Limit<br>Comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series:<br>Conditional convergence. Properties of absolutely convergent series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                            |                                               |                                      |           |
| Infinite Series<br>Convergence and divergence of infinite series of positive real numbers,<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Necessary condition for convergence, Cauchy criterion for convergence;<br>Tests for convergence of positive term series; Basic comparison test, Limit<br>comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.2IVAlternating series:<br>Conditional convergence.<br>Properties of absolutely convergent series.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | criterion                                                                  | Completeness property of set of               | real number.                         |           |
| III       Necessary condition for convergence of positive term series; Basic comparison test, Limit       2         III       Tests for convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test.       2         IV       Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                            |                                               |                                      |           |
| III       Necessary condition for convergence, on vergence, on vergence of positive term series; Basic comparison test, Limit Tests for convergence of positive term series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test.         IV       Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Infinite S                                                                 | ance and divergence of infinite               | series of positive real numbers      |           |
| III       Tests for convergence of positive term test, Raabe's test, Logarithmic test, comparison test, D'Alembert's ratio test, Raabe's test, Logarithmic test, Cauchy's condensation Test, De Morgan & Bertrand's test.         IV       Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Necessar                                                                   | v condition for convergence, C                | auchy criterion for convergence      | it 20     |
| comparison test, D'Alembert's futte cons,<br>Cauchy's condensation Test, De Morgan & Bertrand's test.         Cauchy's condensation Test, De Morgan & Bertrand's test.         IV         Alternating series: Alternating series, Leibniz test, Absolute and<br>conditional convergence. Properties of absolutely convergent series.         IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ш           | Tests for convergence of positive term set. Raabe's test, Logarithmic test |                                               |                                      |           |
| Cauchy's condensation Test, De Morgan de         Cauchy's condensation Test, De Morgan de         IV         Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.         IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                            |                                               |                                      |           |
| IV Alternating series: Alternating series, Leibniz test, Absolute and conditional convergence. Properties of absolutely convergent series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Cauchy's                                                                   | e condensation Test, De morgan                |                                      |           |
| conditional convergence. Flopences of Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                            | i corio                                       | e Leibniz test. Absolute and         | 1 10      |
| conditional convergence (SLA) Full Marks 25 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV          | 1.1.1.01                                                                   | nal convergence. Floperties of a              |                                      |           |
| Literanal Assessment (SIA) Full that is an internet of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | condition                                                                  | Assessment (SIA) Full Marks 2                 | 5 Marks                              |           |
| Sessional Internal Assessment (SIA) Full Marks 23 Marks<br>A Internal written Examination 20 Marks (1 Hr)<br>A Internal Written Examination 20 Marks (1 Hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Session     | al Internal                                                                | A Internal written Examina                    | ation 20 Marks (1 Hr)                |           |
| A Internal written Examination 20 Marks (1 117)<br>B Over All Performance including Regularity 05 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                            | B Over All Performance in                     | cluding regularity                   |           |
| Books Recommended:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Book        | s Recomm                                                                   | ended:                                        |                                      |           |
| 1. Real Analysis: Dasgupta & Prasau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.          | Real Ana                                                                   | ilysis: Dasgupta & Prasau                     |                                      |           |
| 2. Real Analysis: Lalji Prasad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.          | . Real Ana                                                                 | alysis: Lalji Prasad                          |                                      |           |
| 2 Real Analysis: K.K. Jha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | Real Ana                                                                   | alvsis: K.K. Jha                              |                                      |           |
| <ol> <li>Principle of Real Analysis: S. C. Malik</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | D in sinta                                                                 | of Real Analysis: S. C. Malik                 |                                      |           |

| Program:<br>Class: U    | Diploma                                                           | Year: Second                                                        | Semester: IV                                                                                                                      |           |
|-------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|
|                         | Mathematics                                                       |                                                                     |                                                                                                                                   |           |
| C C                     | ada: MN 2R                                                        | Course Title: Discr                                                 | rete Mathematics-II                                                                                                               |           |
| Cours<br>a) Un<br>b) Ap | se Learning derstand and exply the basic co<br>alyze the basic co | xplain the basic concepts of mathematica<br>concepts of mathematica | se will enable the students to:<br>ots of graph theory.<br>al logic.<br>cical logic.<br>concepts of graph theory.                 |           |
| Credit: 4               | (Theory)                                                          | Compulsor                                                           |                                                                                                                                   |           |
| Full Mar                | rks: 75                                                           | Time: 3 Hou                                                         |                                                                                                                                   | Hours     |
| Unit                    |                                                                   | <u> </u>                                                            | Content                                                                                                                           | Hours     |
| I                       | Logic:<br>Boolean alge                                            | ebra, Boolean express                                               | sion, application to switching circuits.                                                                                          | 15        |
| II                      | Isomorphism,<br>Graph, Shor                                       | blogy, Walks, paths, cir                                            | cuits, connectedness, Handshaking Lemma,<br>lity, Union and Interaction of Graphs. Euler<br>Iamiltonian graph, Traveling Salesman | 15        |
| ш                       | troos Funda                                                       | mental circuits, spar                                               | es, path length in rooted trees, spanning<br>ming trees of a weighted graph, cut sets<br>t set, Minimum spanning tree.            | 15        |
| IV                      | Directed gra                                                      | Graph:<br>phs and connected net<br>Planar graphs (                  | ess, directed trees, Matrix representation<br>Combinational and Geometric Duals,<br>of planarity, 5 colour problem.               | 15        |
| Sessiona                | al Internal Ass                                                   | essment (SIA) Full M<br>A Internal written F<br>B Over All Perform  | larks 25 Marks<br>Examination 20 Marks (1 Hr)<br>ance including Regularity 05 Marks                                               |           |
| 1                       | Recommend<br>C.L. Liu, Eleme<br>N. Deo, Graph                     | ed:<br>ents of Discrete Mather<br>Theory with Applicatio            | matics, Tata McGraw Hill, 2nd Edition, 2000.<br>ons to Engineering and Computer Science, PHI                                      | publicati |
|                         | Edition 2010                                                      | nivraj Pundir and Sande                                             | eep Kumar, Discrete Mathematics, Pragati Pub<br>Nathematical Structure, PHI Publication, 6th Ec                                   |           |
|                         |                                                                   |                                                                     |                                                                                                                                   |           |

| Program:                       | Bachelor's Degree                                                                                                                                        | Year: Third                                                          | Semester: V                                                                                                                                                 |       |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Class: U                       | G                                                                                                                                                        |                                                                      |                                                                                                                                                             |       |
|                                | Mathematics                                                                                                                                              |                                                                      |                                                                                                                                                             |       |
|                                | L. J. MNIC                                                                                                                                               | Course Title: Veo                                                    | tors                                                                                                                                                        |       |
| Cours<br>a) Un<br>b) Un<br>fur | se Learning Outcome<br>inderstand the concepts of se<br>inderstand the concept of ven<br>inctions, Grad, Curl and D                                      | ector function of scalar                                             | the students to.<br>the students to.<br>variable t, Scalar point functions, ve<br>e and triple integral formulations<br>heorems in other branches of mather |       |
|                                | 4 (Theory)                                                                                                                                               | Compulsory                                                           |                                                                                                                                                             |       |
| Full Ma                        |                                                                                                                                                          | Time: 3 Hours                                                        |                                                                                                                                                             |       |
|                                |                                                                                                                                                          | Content                                                              |                                                                                                                                                             | Hours |
| Jnit<br>I                      | system of vectors, Lar                                                                                                                                   | ni's theorem, $\lambda - \mu$                                        | ct of 3 & 4 vectors, Reciprocal<br>theorem, work done, Moment of                                                                                            | 15 h  |
| II                             | derivative and geometry<br>three vectors                                                                                                                 | etrical meaning, De                                                  | on of scalar variable t, it's rivative of product of two and                                                                                                | 15 h  |
| ш                              | <b>Grad, Divergence &amp; Curl:</b> Scalar point function and vector point function, grad, divergence and curl, their expansion formulae and properties. |                                                                      |                                                                                                                                                             |       |
| IV                             | Green's, Stoke's of<br>Applications of line<br>line integrals, Conse<br>integral, Surface in<br>theorem                                                  | ntegrals: Mass and<br>rvative vector fields,<br>tegrals, Stokes' the | <b>ence theorem:</b> Line integrals,<br>Work, Fundamental theorem for<br>Green's theorem, Area as a line<br>eorem, The Gauss divergence                     | 15 h  |
| Session                        | al Internal Assessment                                                                                                                                   | SIA) Full Marks 25<br>1al written Examina<br>All Performance inc     | 5 Marks<br>tion - 20 Marks (1 Hr)<br>luding Regularity - 05 Marks                                                                                           |       |
| 1.                             | <b>s Recommended:</b><br>Advanced Engineering N<br>Vector Analysis: Lalji                                                                                | lathematics (10th edit<br>Prasad, Paramount                          | ion). Erwin Kreyszig, Wiley                                                                                                                                 |       |

| Program:                                                                                                   | Bachelor's Degree                                                                                                          | Year: Third                                                                                                                      | Semester: VI                                                                                             |                   |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|
| Class: U                                                                                                   | G                                                                                                                          |                                                                                                                                  |                                                                                                          |                   |
| Subject: I                                                                                                 | Mathematics                                                                                                                | The most p                                                                                                                       | Lability Theory                                                                                          |                   |
| Course C                                                                                                   | ode: MN-2C                                                                                                                 | Course Title: Pro                                                                                                                | bability Theory                                                                                          |                   |
| <ul> <li>a) Use correction</li> <li>b) Correction</li> <li>c) Server</li> <li>bin</li> <li>d) W</li> </ul> | npute probability and o<br>mpute conditional prob<br>dependence of events.<br>t up and work with disc                      | ques (multiplication<br>dds.<br>abilities directly and<br>rete random variable<br>Poisson distributions<br>adom variables. In pa | using Bayes' theorem, and check<br>es. In particular, understand the Be                                  | c for<br>ernoulli |
| Credit: 4                                                                                                  | 4 (Theory)                                                                                                                 | Compulsory                                                                                                                       |                                                                                                          |                   |
| Full Ma                                                                                                    |                                                                                                                            | Time: 3 Hours                                                                                                                    |                                                                                                          | Hours             |
| Unit                                                                                                       |                                                                                                                            | Content                                                                                                                          | Probability of an                                                                                        | IIouro            |
| I                                                                                                          | event, mutually ex<br>probability, independe<br>Baye's theorem,                                                            | clusive events, ac<br>ent events, multiplica                                                                                     | bra of events, Probability of an<br>ddition theorem, Conditional<br>ation theorem, Total probability,    | 15                |
| п                                                                                                          | Random Variables and<br>Functions of Discrete<br>Variables, Mathemati                                                      | Variables, Distribut                                                                                                             | ions, Introduction, Distribution<br>ion Functions of Continuous                                          | 15                |
| III                                                                                                        | Binomial Distribution, Poisson's Distribution, Hypergeometric<br>distribution, Normal & Negative binomial distribution, 15 |                                                                                                                                  |                                                                                                          | 15                |
| IV                                                                                                         | Measures of locatio<br>Curve fitting, associa                                                                              | n and dispersion, mation of attributes. Si                                                                                       | grammatic representation of data.<br>noments, skewness and kurtosis.<br>mple correlation and regression, | 15                |
| Sessiona                                                                                                   | al Internal Assessment (<br>A Intern<br>B Over                                                                             | SIA) Full Marks 25<br>al written Examina<br>All Performance incl                                                                 | Marks<br>tion - 20 Marks (1 Hr)<br>luding Regularity - 05 Marks                                          |                   |
| 1                                                                                                          | Recommended:                                                                                                               | matical Statistics: (                                                                                                            |                                                                                                          |                   |

| Program  | : Bachelor's Degree with                                                    | Year: Fourth                     | Semester: VII                                                                        |       |
|----------|-----------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|-------|
| Honour   | s/Hons. with Research                                                       |                                  |                                                                                      |       |
| Class: U |                                                                             |                                  |                                                                                      |       |
|          | Mathematics                                                                 |                                  |                                                                                      |       |
| Course   | Code: MN-1D                                                                 | Course Title: Re                 | al Analysis-II                                                                       |       |
| ourse Le | earning Outcomes: This course                                               | will enable the stud             | ents to:                                                                             |       |
| a) U     | nderstand the concept of limit                                              | & continuity of a fur            | iction.                                                                              |       |
| b) U     | nderstand the concept of diffe                                              | rentiation and expar             | sion of function with remainder.                                                     |       |
| c) U     | nderstand the definition and co                                             | ondition for Riemann             | n Integrability.                                                                     |       |
| d) U     | nderstand the generalized set                                               | operations and relat             | ion on sets.                                                                         |       |
| Credit:  | 4 (Theory)                                                                  | Compulsory                       |                                                                                      |       |
| Full Ma  | arks: 75                                                                    | Time: 3 Hours                    |                                                                                      | Hours |
| Unit     |                                                                             | Content                          |                                                                                      | Hours |
| I        | continuity, properties of fun                                               | nctions continuous               | , Discontinuities, uniform in closed intervals, Functions                            | 20 h  |
| п        | theorem, remainder after $(1 + x)^n$ , sinx, cosx and tarms                 | er n terms, Por $log(1+x)$ using | ylor's theorem, Maclaurin's<br>wer series expansion of<br>suitable remainder after n | 20 h  |
| ш        | Riemann Integration Defi                                                    | ses of bounded in                | theorem 1 & 11. Integrability<br>ntegrable function primitive,<br>value theorem.     | 20 h  |
| Session  | al Internal Assessment (SIA)<br>A Internal w<br>B Over All Pe               | sitton kyamination               | nrks<br>- 20 Marks (1 Hr)<br>ng Regularity - 05 Marks                                |       |
| Books    | Recommended:                                                                |                                  |                                                                                      |       |
|          | 1. Real Analysis by Lalji                                                   |                                  |                                                                                      |       |
|          | <ol> <li>Real Analysis by K. K.</li> <li>Principle of Real Analy</li> </ol> |                                  |                                                                                      |       |
|          |                                                                             |                                  |                                                                                      |       |

5

| Program              | m: Bachelor's Degree with                                                                                                                 | Year: Fourth             | Semester: VIII                              |       |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|-------|
| Honou<br>Class:      | rs/Hons. with Research<br>UG                                                                                                              |                          |                                             |       |
| Subject              | t: Mathematics                                                                                                                            |                          |                                             |       |
| Course               | Code: MN-2D                                                                                                                               | Course Title: Op         | erations Research                           |       |
| ourse L              | earning Outcomes: This course                                                                                                             |                          |                                             |       |
| a) s                 | olve problems related to linear                                                                                                           | programming proble       | ms.                                         |       |
| b) s                 | olve problems related to transp                                                                                                           | ortation & assignme      | nt problems.                                |       |
| c) S                 | olve real life problems using rep                                                                                                         | lacement model and       | d sequencing.                               |       |
|                      |                                                                                                                                           |                          |                                             |       |
| Credit:              | 4 (Theory)                                                                                                                                | Compulsory               |                                             |       |
| Full M               | arks: 75                                                                                                                                  | Time: 3 Hours            |                                             |       |
| Jnit                 |                                                                                                                                           | Content                  |                                             | Hours |
| I                    | Convex sets in R2 and th<br>Graphical Method. Simple>                                                                                     |                          | P.P., problem formulation,<br>Big M-method, | 15    |
| п                    | Duality: Definition of the dual Method.                                                                                                   | problem, Primal-du       | al relationships, Dual simplex              | 15    |
| III                  | Transportation and Assign                                                                                                                 | ment problems            |                                             | 15    |
| IV                   | Deterministic replacemer machines and n jobs.                                                                                             | it models, seque         | encing problems on two                      | 15    |
| Sessiona             |                                                                                                                                           | tten Examination .       |                                             |       |
| 1. 1<br>2. 1<br>3. 0 | Recommended:<br>Linear Programming Problem<br>Linear Programming Problem<br>Operations Research: Kanti S<br>Operations Research: S. D. Sh | : Lalji Prasad<br>waroop |                                             |       |

7

lov a Mr. Mahendra Kumar Rana

Dr. Bijay Kumar Sinha

Dr. Md. Moiz Ashraf

Dr. P. C. Banenjee

5

Page | 32